1. | EXECUTIVE SUMMARY |
1.1. | Edge AI |
1.2. | IDTechEx definition of Edge AI |
1.3. | Edge vs Cloud characteristics |
1.4. | Advantages and disadvantages of edge AI |
1.5. | Edge devices that employ AI chips |
1.6. | The edge AI chip landscape - overview |
1.7. | The edge AI chip landscape - key hardware players |
1.8. | The edge AI chip landscape - hardware start-ups |
1.9. | The AI chip landscape - other than hardware |
1.10. | Edge AI landscape - geographic split: China |
1.11. | Edge AI landscape - geographic split: North America |
1.12. | Edge AI landscape - geographic split: Rest of World |
1.13. | Inference at the edge |
1.14. | Deep learning: How an AI algorithm is implemented |
1.15. | AI chip capabilities |
2. | FORECASTS |
2.1. | Total revenue forecast |
2.2. | Methodology and analysis |
2.3. | Estimating annual revenue from smartphone chipsets |
2.4. | Smartphone chipset costs |
2.5. | Costs garnered by AI in smartphone chipsets |
2.6. | Revenue forecast by geography |
2.7. | Percentage shares of market by geography |
2.8. | Chip types: architecture |
2.9. | Forecast by chip type |
2.10. | Semiconductor packaging timeline |
2.11. | From 1D to 3D semiconductor packaging |
2.12. | 2D packaging - System-on-Chip |
2.13. | 2D packaging - Multi-Chip Modules |
2.14. | 2.5D and 3D packaging - System-in-Package |
2.15. | 3D packaging - System-on-Package |
2.16. | Forecast by packaging |
2.17. | Consumer vs Enterprise forecast |
2.18. | Forecast by application |
2.19. | Forecast by industry vertical |
2.20. | Forecast by industry vertical - full |
3. | TECHNOLOGY: FROM SEMICONDUCTOR WAFERS TO AI CHIPS |
3.1. | Wafer and chip manufacture processes |
3.1.1. | Raw material to wafer: process flow |
3.1.2. | Wafer to chip: process flow |
3.1.3. | Wafer to chip: process flow |
3.1.4. | The initial deposition stage |
3.1.5. | Thermal oxidation |
3.1.6. | Oxidation by vapor deposition |
3.1.7. | Photoresist coating |
3.1.8. | How a photoresist coating is applied |
3.1.9. | Lithography |
3.1.10. | Lithography: DUV |
3.1.11. | Lithography: Enabling higher resolution |
3.1.12. | Lithography: EUV |
3.1.13. | Etching |
3.1.14. | Deposition and ion implantation |
3.1.15. | Deposition of thin films |
3.1.16. | Silicon Vapor Phase Epitaxy |
3.1.17. | Atmospheric Pressure CVD |
3.1.18. | Low Pressure CVD and Plasma-Enhanced CVD |
3.1.19. | Atomic Layer Deposition |
3.1.20. | Molecular Beam Epitaxy |
3.1.21. | Evaporation and Sputtering |
3.1.22. | Ion Implantation: Generation |
3.1.23. | Ion Implantation: Penetration |
3.1.24. | Metallization |
3.1.25. | Wafer: The final form |
3.1.26. | Semiconductor supply chain players |
3.2. | Transistor technology |
3.2.1. | How transistors operate: p-n junctions |
3.2.2. | How transistors operate: electron shells |
3.2.3. | How transistors operate: valence electrons |
3.2.4. | How transistors work: back to p-n junctions |
3.2.5. | How transistors work: connecting a battery |
3.2.6. | How transistors work: PNP operation |
3.2.7. | How transistors work: PNP |
3.2.8. | How transistors switch |
3.2.9. | From p-n junctions to FETs |
3.2.10. | How FETs work |
3.2.11. | Moore's law |
3.2.12. | Gate length reductions |
3.2.13. | FinFET |
3.2.14. | GAAFET, MBCFET, RibbonFET |
3.2.15. | Process nodes |
3.2.16. | Device architecture roadmap |
3.2.17. | Evolution of transistor device architectures |
3.2.18. | Carbon nanotubes for transistors |
3.2.19. | CNTFET designs |
3.2.20. | Semiconductor foundry node roadmap |
3.2.21. | Roadmap for advanced nodes |
4. | EDGE INFERENCE AND KEY APPLICATIONS |
4.1. | Inference at the edge and benchmarking |
4.1.1. | Edge AI |
4.1.2. | Edge vs Cloud characteristics |
4.1.3. | Advantages and disadvantages of edge AI |
4.1.4. | Edge devices that employ AI chips |
4.1.5. | AI in smartphones and tablets |
4.1.6. | Recent history: Siri |
4.1.7. | Text-to-speech |
4.1.8. | AI in personal computers |
4.1.9. | AI chip basics |
4.1.10. | Parallel computing |
4.1.11. | Low-precision computing |
4.1.12. | AI in speakers |
4.1.13. | AI in smart appliances |
4.1.14. | AI in automotive vehicles |
4.1.15. | AI in sensors and structural health monitoring |
4.1.16. | AI in security cameras |
4.1.17. | AI in robotics |
4.1.18. | AI in wearables and hearables |
4.1.19. | The edge AI chip landscap |
4.1.20. | Inference at the edge |
4.1.21. | Deep learning: How an AI algorithm is implemented |
4.1.22. | AI chip capabilities |
4.1.23. | AI chip capabilities |
4.1.24. | MLPerf - Inference |
4.1.25. | MLPerf Edge |
4.1.26. | Inference: Edge, Nvidia vs Nvidia |
4.1.27. | MLPerf Mobile - Qualcomm HTP |
4.1.28. | The battle for domination: Qualcomm vs MediaTek |
4.1.29. | MLPerf Tiny |
4.2. | AI in smartphones |
4.2.1. | Mobile device competitive landscape |
4.2.2. | Samsung and Oppo chipsets |
4.2.3. | US restrictions on China |
4.2.4. | Smartphone chipset landscape 2022 - Present |
4.2.5. | MediaTek and Qualcomm 2020 - Present |
4.2.6. | AI processing in smartphones: 2020 - Present |
4.2.7. | Node concentrations 2020 - Present |
4.2.8. | Chipset concentrations 2020 - Present |
4.2.9. | Chipset designer concentrations 2020 - Present |
4.2.10. | Node concentrations for each chipset designer |
4.2.11. | AI-capable versus non AI-capable smartphones |
4.2.12. | Chipset volume: 2021 and 2022 |
4.3. | AI in tablets |
4.3.1. | Tablet competitive landscape |
4.3.2. | Tablet chipset landscape 2020 - Present |
4.3.3. | AI processing in tablets: 2020 - Present |
4.3.4. | Node concentrations 2020 - Present |
4.3.5. | Chipset designer concentrations 2021 - Present |
4.3.6. | Node concentrations for each chipset designer |
4.3.7. | AI-capable versus non AI-capable tablets |
4.4. | AI in automotive |
4.4.1. | AI in automobiles: Competitive landscape |
4.4.2. | Levels of driving automation |
4.4.3. | Computational efficiencies |
4.4.4. | AI chips for automotive vehicles |
4.4.5. | Performance and node trends |
4.4.6. | Rising power consumption |
5. | SUPPLY CHAIN PLAYERS |
5.1. | Smartphone chipset case studies |
5.1.1. | MediaTek: Dimensity and APU |
5.1.2. | Qualcomm: MLPerf results - Inference Mobile and Inference Tiny |
5.1.3. | Qualcomm: Mobile AI |
5.1.4. | Apple: Neural Engine |
5.1.5. | Apple: The ANE's capabilities and shortcomings |
5.1.6. | Google: Pixel Neural Core and Pixel Tensor |
5.1.7. | Google: Edge TPU |
5.1.8. | Samsung: Exynos |
5.1.9. | Huawei: Kirin chipsets |
5.1.10. | Unisoc: T618 and T710 |
5.2. | Automotive case studies |
5.2.1. | Nvidia: DRIVE AGX Orin and Thor |
5.2.2. | Qualcomm: Snapdragon Ride Flex |
5.2.3. | Ambarella: CV3-AD685 for automotive applications |
5.2.4. | Ambarella: CVflow architecture |
5.2.5. | Hailo |
5.2.6. | Blaize |
5.2.7. | Tesla: FSD |
5.2.8. | Horizon Robotics: Journey 5 |
5.2.9. | Horizon Robotics: Journey 5 Architecture |
5.2.10. | Renesas: R-Car 4VH |
5.2.11. | Mobileye |
5.2.12. | Mobileye: EyeQ Ultra |
5.2.13. | Texas Instruments: TDA4VM |
5.3. | Embedded device case studies |
5.3.1. | Nvidia: Jetson AGX Orin |
5.3.2. | NXP Semiconductors: Introduction |
5.3.3. | NXP Semiconductors: MCX N |
5.3.4. | NXP Semiconductors: i.MX 95 and NPU |
5.3.5. | Intel: AI hardware portfolio |
5.3.6. | Intel: Core |
5.3.7. | Perceive |
5.3.8. | Perceive: Ergo 2 architecture |
5.3.9. | GreenWaves Technologies |
5.3.10. | GreenWaves Technologies: GAP9 architecture |
5.3.11. | AMD Xilinx: ACAP |
5.3.12. | AMD: Versal AI |
5.3.13. | NationalChip: GX series |
5.3.14. | NationalChip: GX8002 and gxNPU |
5.3.15. | Efinix: Quantum architecture |
5.3.16. | Efinix: Titanium and Trion FPGAs |
6. | APPENDICES |
6.1. | List of smartphones surveyed |
6.1.1. | Appendix: List of smartphones surveyed - Apple and Asus |
6.1.2. | Appendix: List of smartphones surveyed - Google and Honor |
6.1.3. | Appendix: List of smartphones surveyed - Huawei, HTC and Motorola |
6.1.4. | Appendix: List of smartphones surveyed - Nokia, OnePlus, Oppo |
6.1.5. | Appendix: List of smartphones surveyed - realme |
6.1.6. | Appendix: List of smartphones surveyed - Samsung and Sony |
6.1.7. | Appendix: List of smartphones surveyed - Tecno Mobile |
6.1.8. | Appendix: List of smartphones surveyed - Xiaomi |
6.1.9. | Appendix: List of smartphones surveyed - Vivo and ZTE |
6.2. | List of tablets surveyed |
6.2.1. | Appendix: List of tablets surveyed - Acer, Amazon and Apple |
6.2.2. | Appendix: List of tablets surveyed - Barnes & Noble, Google, Huawei, Lenovo |
6.2.3. | Appendix: List of tablets surveyed - Microsoft, OnePlus, Samsung, Xiaomi |