1. | EXECUTIVE SUMMARY |
1.1. | What's New in This Report? |
1.2. | Materials Considered in this Report |
1.3. | EV Battery Demand Market Share Forecast (GWh) |
1.4. | Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence |
1.5. | Cathode Market Share for Li-ion in EVs (2015-2033) |
1.6. | Li-ion Timeline - Technology and Performance |
1.7. | Cathode Material Intensities (kg/kWh) |
1.8. | How Does Material Intensity Change? |
1.9. | The Promise of Silicon |
1.10. | Anode Material Demand Forecast for EVs 2021-2033 (kg) |
1.11. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) |
1.12. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) |
1.13. | Cell Format Market Share |
1.14. | Gravimetric Energy Density and Cell-to-pack Ratio |
1.15. | Cell vs Pack Energy Density |
1.16. | Component Breakdown of a Battery Pack |
1.17. | Thermal Interface Material Trends |
1.18. | Battery Thermal Management Strategy Market Share |
1.19. | Energy Density Improvements with Composites |
1.20. | Insulation Materials Comparison |
1.21. | Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2033 (kg) |
1.22. | Fire Protection Material Market Shares |
1.23. | Battery Pack Materials Forecast 2021-2033 (kg) |
1.24. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) |
1.25. | Total Battery Cell and Pack Materials Forecast by Material 2021-2033 (kg) |
1.26. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2033 (US$) |
2. | INTRODUCTION |
2.1. | Electric Vehicle Definitions |
2.2. | Drivetrain Specifications |
2.3. | Battery Materials for Electric Vehicles |
2.4. | Materials Considered in this Report |
3. | LI-ION BATTERY CHEMISTRY |
3.1. | What is a Li-ion Battery? |
3.2. | Lithium Battery Chemistries |
3.3. | Why Lithium? |
3.4. | Li-ion Cathode Benchmark |
3.5. | Li-ion Anode Benchmark |
3.6. | Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence |
4. | CELL COSTS AND ENERGY DENSITY |
4.1. | Chemistry Energy Density Comparison |
4.2. | Li-ion Timeline - Technology and Performance |
4.3. | Impact of Material Price Volatility |
4.4. | Impact of Material Price |
4.5. | BEV Battery Cell and Pack Price Forecast 2020-2033 ($/kWh) |
4.6. | Li-ion Batteries: Technologies, Markets and End of Life |
5. | MATERIALS FOR LI-ION BATTERY CELLS |
5.1. | Introduction |
5.1.1. | Impact of Material Price Volatility |
5.1.2. | Raw Material Uncertainty |
5.1.3. | Drivers and Restraints for Battery Recycling |
5.1.4. | How Does Material Intensity Change? |
5.1.5. | Inactive Material Intensities (exc. casings) |
5.2. | Raw Materials |
5.2.1. | The Elements Used in Li-ion Batteries |
5.2.2. | The Li-ion Supply Chain |
5.2.3. | Raw Materials Critical to Li-ion |
5.2.4. | Raw Material Supply a Driver for Alternative Chemistries? |
5.2.5. | Li-ion Raw Material Geographical Distribution |
5.3. | Cathode Materials |
5.3.1. | Cathode Development |
5.3.2. | Cathode Material Intensities (kg/kWh) |
5.3.3. | Cathode Market Share for Li-ion in EVs (2015-2033) |
5.3.4. | Cathode Material Demand Forecast 2021-2033 (kg) |
5.3.5. | Price Assumptions |
5.3.6. | Critical Cathode Material Value Forecast 2021-2033 (US$) |
5.3.7. | Lithium |
5.3.8. | Cobalt |
5.3.9. | Nickel |
5.4. | Anode Materials |
5.4.1. | Anode Materials |
5.4.2. | Anode Material Demand Forecast for EVs 2021-2033 (kg) |
5.4.3. | Anode Material Prices |
5.4.4. | Anode Material Market Value Forecast for EVs 2021-2033 (US$) |
5.4.5. | Graphite |
5.4.6. | Silicon |
5.5. | Electrolytes, Separators, Binders, and Conductive Additives |
5.5.1. | What is in a Cell? |
5.5.2. | Introduction to Li-ion Electrolytes |
5.5.3. | Electrolyte Technology Overview |
5.5.4. | Introduction to Separators |
5.5.5. | Polyolefin Separators |
5.5.6. | Introduction to Binders |
5.5.7. | Binders - Aqueous vs Non-aqueous |
5.5.8. | Conductive Agents |
5.5.9. | Specialty Carbon Black Analysis |
5.5.10. | Carbon Nanotubes in Li-ion Batteries |
5.5.11. | Why Use Nanocarbons? |
5.5.12. | Key Carbon Nanotube Relationships |
5.5.13. | Market Expansion of MWCNTs |
5.5.14. | Carbon Nanotubes |
5.5.15. | Overview of Graphene's Potential in Energy Storage |
5.5.16. | Main Graphene Players - Energy Storage |
5.5.17. | Current Collectors in a Li-ion Battery Cell |
5.5.18. | Current Collector Materials |
5.6. | Total Battery Cell Materials Forecast |
5.6.1. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) |
5.6.2. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) |
6. | CELL AND PACK DESIGN |
6.1. | Introduction |
6.1.1. | Cell Types |
6.1.2. | Cell Format Market Share |
6.1.3. | Cell Format Comparison |
6.1.4. | Li-ion Batteries: from Cell to Pack |
6.1.5. | Pack Design |
6.2. | Cell-to-pack, cell-to-chassis and Large Cell Formats: Designs and Announcements |
6.2.1. | What is Cell-to-pack? |
6.2.2. | Drivers and Challenges for Cell-to-pack |
6.2.3. | What is Cell-to-chassis/body? |
6.2.4. | Servicing/ Repair and Recyclability |
6.2.5. | BYD Blade Cell-to-pack |
6.2.6. | BYD Cell-to-body |
6.2.7. | CATL Cell-to-pack and Cell-to-chassis |
6.2.8. | GM Ultium |
6.2.9. | Leapmotor Cell-to-chassis |
6.2.10. | LG Removing the Module |
6.2.11. | Nio Hybrid Chemistry Cell-to-pack |
6.2.12. | Our Next Energy: Aeris |
6.2.13. | Stellantis Cell-to-pack |
6.2.14. | SVOLT - Dragon Armor Battery |
6.2.15. | Tesla Cell-to-body |
6.2.16. | VW Cell-to-pack |
6.2.17. | Cell-to-pack and Cell-to-body Designs Summary |
6.2.18. | Gravimetric Energy Density and Cell-to-pack Ratio |
6.2.19. | Volumetric Energy Density and Cell-to-pack Ratio |
6.2.20. | Outlook for Cell-to-pack & Cell-to-body Designs |
6.3. | Energy Density and Material Utilization |
6.3.1. | Passenger Cars: Pack Energy Density (291 models) |
6.3.2. | Passenger Cars: Pack Energy Density Trends |
6.3.3. | Passenger Cars: Cell Energy Density Trends |
6.3.4. | Cell vs Pack Energy Density |
6.3.5. | Cell and Pack Energy Density Forecast 2020-2033 (Wh/kg) |
6.3.6. | Component Breakdown of a Battery Pack |
6.3.7. | Reduction of Pack Materials (kg/kWh) |
7. | PACK COMPONENTS |
7.1. | Thermal Interface Materials for EV Battery Packs |
7.1.1. | Introduction to Thermal Interface Materials for EVs |
7.1.2. | TIM Pack and Module Overview |
7.1.3. | TIM Application - Pack and Modules |
7.1.4. | TIM Application by Cell Format |
7.1.5. | Key Properties for TIMs in EVs |
7.1.6. | Gap Pads in EV Batteries |
7.1.7. | Switching to Gap Fillers from Pads |
7.1.8. | Thermally Conductive Adhesives in EV Batteries |
7.1.9. | Material Options and Market Comparison |
7.1.10. | TIM Chemistry Comparison |
7.1.11. | The Silicone Dilemma for the Automotive Market |
7.1.12. | Gap Filler to Thermally Conductive Adhesives |
7.1.13. | Thermal Conductivity Shift |
7.1.14. | TCA Requirements |
7.1.15. | TIM Demand per Vehicle |
7.1.16. | TIM Forecast for EV Batteries (kg) |
7.1.17. | Other Applications for TIMs |
7.2. | Cold Plates and Coolant Hoses |
7.2.1. | Thermal System Architecture |
7.2.2. | Coolant Fluids in EVs |
7.2.3. | Introduction to EV Battery Thermal Management |
7.2.4. | Battery Thermal Management Strategy by OEM |
7.2.5. | Battery Thermal Management Strategy Market Share |
7.2.6. | Thermal Management in Cell-to-pack Designs |
7.2.7. | Inter-cell Heat Spreaders or Cooling Plates |
7.2.8. | Advanced Cold Plate Design |
7.2.9. | Examples of Cold Plate Design |
7.2.10. | DuPont - Hybrid Composite/metal Cooling Plate |
7.2.11. | L&L Products - Structural Adhesive to Enable a New Cold Plate Design |
7.2.12. | Senior Flexonics - Battery Cold Plate Materials Choice |
7.2.13. | Coolant Hoses for EVs |
7.2.14. | Coolant Hose Material |
7.2.15. | Alternate Hose Materials |
7.2.16. | Thermal Management Component Mass Forecast 2021-2033 (kg) |
7.3. | Battery Enclosures |
7.3.1. | Battery Enclosure Materials and Competition |
7.3.2. | From Steel to Aluminium |
7.3.3. | Towards Composite Enclosures? |
7.3.4. | Composite Enclosure EV Examples (1) |
7.3.5. | Composite Enclosure EV Examples (2) |
7.3.6. | Projects for Composite Enclosure Development (1) |
7.3.7. | Projects for Composite Enclosure Development (2) |
7.3.8. | Alternatives to Phenolic Resins |
7.3.9. | Are Polymers Suitable Housings? |
7.3.10. | Plastic Intensive Battery Pack from SABIC |
7.3.11. | SMC vs RTM/LCM |
7.3.12. | SMC for Battery Trays and Lids - LyondellBasell |
7.3.13. | Advanced Composites for Battery Enclosures - INEOS Composites |
7.3.14. | Polyamide 6-based Enclosure |
7.3.15. | Continental Structural Plastics - Honeycomb Technology |
7.3.16. | Composite Parts - TRB Lightweight Structures |
7.3.17. | Composites with Fire Protection |
7.3.18. | Other Composite Enclosure Material Suppliers (1) |
7.3.19. | Other Composite Enclosure Material Suppliers (2) |
7.3.20. | EMI Shielding for Composite Enclosures |
7.3.21. | Challenges with Structural Batteries |
7.3.22. | Adding Fire Protection to Composite Parts |
7.3.23. | Metal Foams for Battery Enclosures? |
7.3.24. | Battery Enclosure Materials Summary |
7.3.25. | Energy Density Improvements with Composites |
7.3.26. | Cost Effectiveness of Composite Enclosures |
7.3.27. | Battery Enclosure Material Forecasts 2021-2033 (kg) |
7.4. | Fire Protection Materials |
7.4.1. | Thermal Runaway and Fires in EVs |
7.4.2. | Battery Fires and Related Recalls (automotive) |
7.4.3. | Automotive Fire Incidents: OEMs and Causes |
7.4.4. | EV Fires Compared to ICEs |
7.4.5. | Severity of EV Fires |
7.4.6. | EV Fires: When Do They Happen? |
7.4.7. | Regulations |
7.4.8. | What are Fire Protection Materials? |
7.4.9. | Thermally Conductive or Thermally Insulating? |
7.4.10. | Fire Protection Materials: Main Categories |
7.4.11. | Material comparison |
7.4.12. | Density vs Thermal Conductivity - Thermally Insulating |
7.4.13. | Material Market Shares |
7.4.14. | Fire Protection Materials Forecast 2019-2033 (kg) |
7.4.15. | Fire Protection Materials |
7.5. | Compression Pads/Foams |
7.5.1. | Compression Pads/foams |
7.5.2. | Polyurethane Compression Pads |
7.5.3. | Rogers Compression Pads |
7.5.4. | Compression and Fire Protection (1) |
7.5.5. | Compression and Fire Protection (2) |
7.5.6. | Saint-Gobain |
7.5.7. | Players in Compression Pads/foams |
7.5.8. | Example use in EVs: Ford Mustang Mach-E |
7.5.9. | Compression Pads/foams Forecast 2021-2033 (kg) |
7.6. | Cell Electrical Insulation |
7.6.1. | Inter-cell Electrical Isolation |
7.6.2. | Films for Electrical Insulation |
7.6.3. | Avery Dennison - Tapes for Batteries |
7.6.4. | Dielectric Coatings |
7.6.5. | Insulation Materials Comparison |
7.6.6. | Insulating Cell-to-cell Foams |
7.6.7. | Inter-cell Electric Isolation Forecast 2021-2033 (kg) |
7.7. | Electrical Interconnects and Insulation |
7.7.1. | Introduction to Battery Interconnects |
7.7.2. | Aluminum vs Copper for Interconnects |
7.7.3. | Busbar Insulation Materials |
7.7.4. | Tesla Model S P85D |
7.7.5. | Nissan Leaf 24kWh: Cell Connection |
7.7.6. | Nissan Leaf 24kWh |
7.7.7. | BMW i3 94Ah |
7.7.8. | Hyundai E-GMP |
7.7.9. | VW ID4 |
7.7.10. | Tesla 4680 |
7.7.11. | Material Quantity in Battery Interconnects: kg/kWh Summary |
7.7.12. | Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2033 (kg) |
7.8. | Battery Pack Materials Forecasts |
7.8.1. | Battery Pack Materials Forecast 2021-2033 (kg) |
7.8.2. | Battery Pack Materials Price Assumptions |
7.8.3. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) |
8. | BATTERY MATERIAL/STRUCTURE EXAMPLES |
8.1. | Examples: Automotive |
8.1.1. | Audi e-tron |
8.1.2. | Audi e-tron GT |
8.1.3. | BMW i3 |
8.1.4. | BYD Blade |
8.1.5. | Chevrolet Bolt |
8.1.6. | Faraday Future FF91 |
8.1.7. | Ford Mustang Mach-E/Transit/F150 battery |
8.1.8. | Hyundai Kona |
8.1.9. | Hyundai E-GMP |
8.1.10. | Jaguar I-PACE |
8.1.11. | Mercedes EQS |
8.1.12. | MG ZS EV |
8.1.13. | MG Cell-to-pack |
8.1.14. | Rimac Technology |
8.1.15. | Rivian R1T |
8.1.16. | Tesla Model 3/Y Cylindrical NCA |
8.1.17. | Tesla Model 3/Y Prismatic LFP |
8.1.18. | Tesla Model S P85D |
8.1.19. | Tesla Model S Plaid |
8.1.20. | Tesla 4680 Pack |
8.1.21. | Toyota Prius PHEV |
8.1.22. | Toyota RAV4 PHEV |
8.1.23. | VW MEB Platform |
8.2. | Examples: Heavy duty, Commercial Vehicles, and Other Vehicles |
8.2.1. | Akasol (BorgWarner) |
8.2.2. | Microvast & REE |
8.2.3. | John Deere (Kreisel) |
8.2.4. | Romeo Power |
8.2.5. | Superbike Battery Holder |
8.2.6. | Vertical Aerospace |
8.2.7. | Voltabox |
8.2.8. | Xerotech |
8.2.9. | XING Mobility |
9. | FORECASTS AND ASSUMPTIONS |
9.1. | EV Materials Forecast: Methodology & Assumptions |
9.2. | IDTechEx Model Database |
9.3. | Average Battery Capacity Forecast: Car, 2W, 3W, Microcar, Bus, Van, and Truck |
9.4. | EV Battery Demand Market Share Forecast (GWh) |
9.5. | Cathode Material Demand Forecast 2021-2033 (kg) |
9.6. | Price Assumptions |
9.7. | Critical Cathode Material Value Forecast 2021-2033 (US$) |
9.8. | Anode Material Demand Forecast for EVs 2021-2033 (kg) |
9.9. | Anode Material Prices |
9.10. | Anode Material Market Value Forecast for EVs 2021-2033 (US$) |
9.11. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) |
9.12. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) |
9.13. | Battery Pack Materials Forecast 2021-2033 (kg) |
9.14. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) |
9.15. | Total Battery Cell and Pack Materials Forecast by Material 2021-2033 (kg) |
9.16. | Battery Pack Materials Price Assumptions |
9.17. | Total Battery Cell and Pack Materials Forecast by Vehicle Type 2021-2033 (kg) |
9.18. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2033 (US$) |