1. | EXECUTIVE SUMMARY |
1.1. | Locations for Thermal Management Materials |
1.2. | The Automation Levels in Detail |
1.3. | Sensors and Their Purpose |
1.4. | Car Sales Forecast by SAE Level 2015-2033 |
1.5. | Sensor Unit Sales Forecast 2020-2033 |
1.6. | Thermal Interface Materials for ADAS |
1.7. | Thermal Interface Materials for ADAS Cameras |
1.8. | Thermal Interface Materials for ADAS Radars |
1.9. | Thermal Interface Materials for ADAS LiDAR |
1.10. | Thermal Interface Materials in the ECU |
1.11. | Liquid-Cooled ECUs Forecast 2019-2033 |
1.12. | ADAS Chip Power Progression |
1.13. | Summary of Performance for TIM Players |
1.14. | TIM Requirements for ADAS Components |
1.15. | TIM Properties by Application |
1.16. | TIM Requirements for ADAS Components |
1.17. | TIM Forecast for ADAS (Area) 2020-2033 |
1.18. | TIM Forecast for ADAS (Tonnes) 2020-2033 |
1.19. | TIM Forecast for ADAS ($ Millions) 2020-2033 |
1.20. | EMI is More Challenging at Higher Frequencies |
1.21. | Multifunctional TIMs as a Solution |
1.22. | Importance of the Radome |
1.23. | Radome Materials Forecast (Area) 2015-2033 |
1.24. | How Important is Die Attach for ADAS Sensors? |
1.25. | Summary of Die Attach for ADAS Sensors |
1.26. | Die Attach Forecast for Key Components Within ADAS Sensors (Area) 2020-2033 |
1.27. | Die Attach Forecast for Key Components Within ADAS Sensors (Tonnes) 2020-2033 |
1.28. | Company Profiles |
2. | INTRODUCTION |
2.1.1. | The Automation Levels in Detail |
2.1.2. | Functions of Autonomous Driving at Different Levels |
2.1.3. | The Components of Autonomy |
2.1.4. | Typical Sensor Suite for Autonomous Cars |
2.1.5. | The Sensor Trifactor |
2.1.6. | Sensors and Their Purpose |
2.1.7. | Autonomy is Changing the Automotive Supply Chain |
2.1.8. | Car Sales Forecast by SAE Level 2015-2033 |
2.1.9. | Sensor Suite Metadata |
2.1.10. | MaaS Sensor Analysis |
2.1.11. | MaaS Sensor Suite Analysis |
2.1.12. | Sensor Unit Sales Forecast 2020-2033 |
2.1.13. | Autonomous Vehicle Markets |
2.2. | Thermal Management in ADAS Sensors |
2.2.1. | Locations for Thermal Management Materials |
2.2.2. | What are the Challenges? |
2.3. | Cameras |
2.3.1. | RGB/Visible Light Camera SWOT |
2.3.2. | CMOS Image Sensors vs CCD Cameras |
2.3.3. | Segmenting the Electromagnetic Spectrum |
2.3.4. | IR Cameras SWOT |
2.3.5. | Camera Anatomy |
2.3.6. | Camera Board Temperature Sensors |
2.4. | Radar |
2.4.1. | Radar SWOT |
2.4.2. | Radar — Radio Detection And Ranging |
2.4.3. | Front Radar Applications |
2.4.4. | Side Radars |
2.4.5. | Radar Anatomy |
2.4.6. | Radar Key Components |
2.4.7. | Primary Radar Components — The Antenna |
2.4.8. | Primary Radar Components — The RF Transceiver |
2.4.9. | Primary Radar Components — MCU |
2.4.10. | Board Trends |
2.4.11. | Radars are Getting Smaller |
2.4.12. | LANXESS Concept Radar |
2.4.13. | Automotive Radar Markets |
2.5. | LiDAR |
2.5.1. | Automotive LiDAR: SWOT Analysis |
2.5.2. | Automotive LiDAR: Operating Process and Requirements |
2.5.3. | Temperature and LiDAR |
2.5.4. | LiDAR Thermal Considerations |
2.5.5. | Thermal for LiDAR |
2.5.6. | Thermal Design for LiDAR Units |
2.5.7. | GaN in Automotive LiDAR |
2.5.8. | EPC — GaN in Automotive LiDAR |
2.5.9. | Laser Components — GaN in Automotive LiDAR |
2.5.10. | SABIC — LiDAR Materials |
2.5.11. | LiDAR Markets |
2.6. | ECUs/Computers |
2.6.1. | Computers and ECUs in ADAS |
2.6.2. | Thermal Management Integration Concepts in ECUs |
2.6.3. | Lack of TIMs in Previous ECU Designs |
2.6.4. | Audi zFAS Computer |
2.6.5. | Tesla's Computer Generations |
2.6.6. | Tesla's Liquid-Cooled MCU/ECU |
2.6.7. | Liquid-Cooled ECUs Forecast 2019-2033 |
3. | THERMOELECTRIC COOLING |
3.1. | Thermoelectric Cooling |
3.2. | Laird Thermoelectric Coolers |
3.3. | Phononic Thermoelectric Coolers |
3.4. | Ferrotec Thermoelectric Coolers |
4. | EMI AND THERMAL MATERIALS |
4.1. | EMI is More Challenging at Higher Frequencies |
4.2. | Antenna De-sense |
4.3. | Heatsink Assembly for EMI |
4.4. | Multifunctional TIMs as a Solution |
4.5. | EMI Gaskets |
4.6. | Henkel — TIM and EMI |
4.7. | Kitagawa — TIM and EMI |
4.8. | Laird — TIM and EMI |
4.9. | Parker — Form-in-place EMI Gasket |
4.10. | Schlegel — TIM and EMI |
4.11. | Current State and Future Developments |
5. | RADAR RADOME AND ENCLOSURE MATERIALS |
5.1. | Importance of the Radome |
5.2. | Thermal and Dielectric Considerations |
5.3. | Ideal Radome Properties |
5.4. | Polymer Housing Materials |
5.5. | Avient — Polymer Enclosure Materials |
5.6. | DuPont — PBT Radome and Housing Materials |
5.7. | DSM — PPS Radar Materials |
5.8. | SABIC — Enclosure Materials |
5.9. | Preperm |
5.10. | DuPont — Crastin & Laird (a DuPont Company) |
5.11. | Materials for Radar Forecast Method |
5.12. | Radome Materials Forecast (Area) 2015-2033 |
6. | THERMAL INTERFACE MATERIALS |
6.1.1. | Introduction to Thermal Interface Materials (TIM) |
6.1.2. | Introduction (2) |
6.1.3. | Key Factors in System Level Performance |
6.1.4. | Thermal Conductivity vs Thermal Resistance |
6.1.5. | Bill of Materials and the Importance of Longevity |
6.1.6. | TIM Considerations |
6.1.7. | Eight Types of Thermal Interface Material |
6.1.8. | Properties of Thermal Interface Materials |
6.2. | TIMs for ADAS |
6.2.1. | Thermal Interface Materials for ADAS |
6.2.2. | Thermal Interface Materials for ADAS Sensors |
6.3. | TIMs for ADAS Cameras |
6.3.1. | Thermal Interface Materials for ADAS Cameras |
6.3.2. | Bosch ADAS Camera |
6.3.3. | Tesla's Triple Lens Camera |
6.3.4. | ZF S-Cam4 Triple and Single Lens Cameras |
6.3.5. | Thermal Conductivity of TIMs for ADAS Cameras |
6.3.6. | Operating Temperature of TIMs for Cameras |
6.3.7. | Density and Thermal Conductivity of TIMs for Cameras |
6.3.8. | TIMs for ADAS Cameras Forecast 2020-2033 |
6.4. | TIMs for ADAS Radar |
6.4.1. | Thermal Interface Materials for ADAS Radars |
6.4.2. | Bosch 77 GHz Radar |
6.4.3. | Bosch Mid-Range Radar |
6.4.4. | MANDO Long-Range Radar |
6.4.5. | DENSO DNMWR006 Radar |
6.4.6. | DENSO DNMWR010 Radar |
6.4.7. | GM Adaptive Cruise Control Radar |
6.4.8. | Thermal Conductivity of TIMs for Radar |
6.4.9. | Operating Temperature of TIMs for Radar |
6.4.10. | Density and Thermal Conductivity of TIMs for Radar |
6.4.11. | TIM with Radar Board Trends |
6.4.12. | TIMs for ADAS Radars Forecast 2020-2033 |
6.5. | TIMs for ADAS LiDAR |
6.5.1. | Thermal Interface Materials for ADAS LiDAR |
6.5.2. | 3irobotics Delta3 |
6.5.3. | Continental Short-Range LiDAR |
6.5.4. | Ouster OS1-64 LiDAR |
6.5.5. | Valeo Scala LiDAR |
6.5.6. | Possible New TIM Locations: Laser Driver Dies |
6.5.7. | Thermal Conductivity of TIMs for LiDAR |
6.5.8. | Operating Temperature of TIMs for LiDAR |
6.5.9. | Density and Thermal Conductivity of TIMs for LiDAR |
6.5.10. | TIM for ADAS LiDAR Forecast 2020-2033 |
6.6. | TIMs for ADAS Computers and ECUs |
6.6.1. | Thermal Interface Materials in the ECU |
6.6.2. | ADAS Chip Power Progression |
6.6.3. | 3M — TIM and EMI for ECUs |
6.6.4. | Henkel — ECU Case Study |
6.6.5. | Audi zFAS |
6.6.6. | Tesla HW 2.5 |
6.6.7. | Tesla HW 3.0 |
6.6.8. | Thermal Conductivity of TIMs in ECUs/Computers |
6.6.9. | Operating Temperature of TIMs for ECUs |
6.6.10. | Density and Thermal Conductivity of TIMs for ECUs |
6.6.11. | TIM Forecast for ECUs/ADAS Computers 2020-2033 |
6.7. | TIM Players in ADAS |
6.7.1. | 3M |
6.7.2. | Dow |
6.7.3. | Fujipoly |
6.7.4. | GLPOLY |
6.7.5. | Henkel — TIM for Cameras |
6.7.6. | Henkel — TIM for Radars |
6.7.7. | Laird — ADAS TIMs |
6.7.8. | Momentive |
6.7.9. | Parker — TIMs for Cameras |
6.7.10. | Sekisui |
6.7.11. | Shin Etsu |
6.7.12. | Summary of Performance for TIM Players |
6.8. | TIM Requirements and Total Forecasts for ADAS Sensors |
6.8.1. | TIM Requirements for ADAS Components |
6.8.2. | TIM Properties by Application |
6.8.3. | TIM Requirements for ADAS Components |
6.8.4. | TIM: Price Analysis |
6.8.5. | TIM: Price Analysis (2) |
6.8.6. | TIM Forecast for ADAS (Area) 2020-2033 |
6.8.7. | TIM Forecast for ADAS (Tonnes) 2020-2033 |
6.8.8. | TIM: Price Analysis (3) |
6.8.9. | TIM Forecast for ADAS ($ Millions) 2020-2033 |
7. | DIE ATTACH FOR ADAS |
7.1. | Die Attach for Image Sensors |
7.2. | OmniVision Image Sensors |
7.3. | Radar IC Packages |
7.4. | GaN LiDAR Laser Drivers |
7.5. | How Important is Die Attach for ADAS Sensors? |
7.6. | Solder Options and Current Die Attach |
7.7. | Metal Sintering vs Soldering |
7.8. | Challenges with Ag Sintering |
7.9. | Simplifications to the Manufacturing Process |
7.10. | Nano Particle Ag Sinter |
7.11. | Why Metal Sintering? |
7.12. | ESI Automotive — Die Attach for Radar |
7.13. | Henkel — Die Attach for ADAS |
7.14. | Heraeus — ECU Materials |
7.15. | Gamechanger? Threats to Ag — Cu Sintering Pastes |
7.16. | Cu Sinter Materials |
7.17. | Cu Sintering: Characteristics |
7.18. | Reliability of Cu-Sintered Joints |
7.19. | Summary of Die Attach for ADAS Sensors |
7.20. | Die Attach Forecast for Key Components Within ADAS Sensors (Area) 2020-2033 |
7.21. | Die Attach Forecast for Key Components Within ADAS Sensors (Tonnes) 2020-2033 |
8. | SUMMARY OF FORECASTS |
8.1. | Methodology for Forecasting Car Sales |
8.2. | Forecasting Adoption of Level 3 and Level 4 Technology |
8.3. | Sensor Forecast Method and Assumptions |
8.4. | Forecast Methodology for TIM and Die Attach |
8.5. | Car Sales Forecast by SAE Level 2015-2033 |
8.6. | Sensor Unit Sales Forecast 2020-2033 |
8.7. | Liquid-Cooled ECUs Forecast 2019-2033 |
8.8. | Radome Materials Forecast (Area) 2015-2033 |
8.9. | TIM for ADAS Cameras Forecast 2020-2033 |
8.10. | TIM for ADAS Radars Forecast 2020-2033 |
8.11. | TIM for ADAS LiDAR Forecast 2020-2033 |
8.12. | TIM Forecast for ECUs/ADAS Computers 2020-2033 |
8.13. | TIM Forecast for ADAS (Area) 2020-2033 |
8.14. | TIM Forecast for ADAS (Tonnes) 2020-2033 |
8.15. | TIM: Price Analysis |
8.16. | TIM Forecast for ADAS ($ Millions) 2020-2033 |
8.17. | Die Attach Forecast for Key Components Within ADAS Sensors (Area) 2020-2033 |
8.18. | Die Attach Forecast for Key Components Within ADAS Sensors (Tonnes) 2020-2033 |