5G導入の増加により低損失材料の市場が2034年までに21億米ドルを超える規模に成長。

5G/6G向け低損失材料 2024-2034年:市場、トレンド、予測

5Gと6Gの材料市場分析。低損失材料市場予測、トレンド、有力企業、技術。


製品情報 概要 目次 価格 Related Content
5Gデバイスの全世界での導入拡大により数十億ドル規模の産業となっています。5Gネットワークの最も革新的な部分は高周波数5G技術にあり、これは今後10年以内に普及することになるでしょう。ミリ波帯5G対応デバイスはPCB(プリント基板)とパッケージの双方のレベルの伝送損失を減らすため低損失材料を採用することになります。これは5Gの低損失材料市場を牽引することとなり、2034年までに21億米ドルを超える規模となるでしょう。
「5G/6G向け低損失材料 2024-2034年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要と結論
● 5G市場概要
● 5G 向け主要な既存低損失材料
□ FR-4とBTなどのエポキシ系材料
□ ポリイミド
□ 液晶ポリマー
□ ポリテトラフルオロエチレン
● 5G向け低損失材料の追加と新材料
□ 低温同時焼成セラミックス
□ ガラス
□ PPE
□ 炭化水素
● 低損失材料の主要5G用途
□ 5G基地局
□ 5Gスマートフォンアンテナ
□ 5G CPE
□ 5G向け先端半導体パッケージ
● 6G向け低損失材料の現状
● 5G向け低損失材料の市場規模、市場展望、市場予測
● インタビューを含む企業概要
 
「5G/6G向け低損失材料 2024-2034年」は以下の情報を提供します
低損失材料の材料動向とメーカー分析:
  • 既存と最新の低損失材料の特定
  • 各用途(プリント基板、フィルター、アンテナ、パッケージングなど)で使用される材料分析
  • 各材料分野における商用化された低損失材料の誘電特性ベンチマーク比較
  • 各材料分野における重要材料のサプライヤー特定
  • 各用途におけるさまざまな材料分野の成長要因と制約の考察: 5G基地局、5Gスマートフォンアンテナ、5G CPE
  • 5G向け最新技術と低損失材料の考察:アンテナ イン パッケージ、最先端半導体パッケージング、インク式EMIシールディングなど
  • 6G向け低損失材料分析と現状
市場予測と分析:
  • 5G向け低損失材料の10年間詳細市場予測(周波数別、用途別、材料タイプ別分類)
  • 3つの5G用途向け低損失材料の10年間市場予測: 5G基地局、CPE、スマートフォン
  • 5G導入分析と3つの5G用途向け材料
 
Fifth-generation telecommunication technology, 5G, is more than a faster mobile experience to stream movies. It enables a universal connection between devices from automotive to remote robots. As profitable business models and killer applications start to emerge, 5G is one of the fastest growth markets, which IDTechEx forecasts to hit over US$842bn in 2033 and contribute trillions in annual connectivity boost to global GDP.
 
The most revolutionary aspect of the 5G network relies on high frequency 5G technologies, i.e. mmWave 5G, which utilize the spectrum from 26 GHz up to 40 GHz. At such high frequencies, many technologies and devices are facing challenges such as significant transmission loss, higher power usage needing more efficient power supply, and excess heat generation. Transmission loss is a pain point for both 5G antennas and radio frequency integrated circuits. For low frequency 5G, i.e. sub-6 GHz 5G, due to the high data transfer speed, reducing signal loss is also desirable.
 
 
Figure 1: Overview of challenges, trends and innovations for mmWave 5G, source: IDTechEx
 
With the future rise of mmWave 5G, low-loss materials will experience rapid growth and play an increasingly important role. In this report, we survey the landscape of the low-loss materials and benchmark their performance by five key factors, i.e. dielectric constant (Dk), dissipation factor (Df), moisture absorption, cost and manufacturability. Low-loss materials will not only be used as a substrate for RF components or for the PCB, but also within advanced packages. One strong packaging trend is antenna in package (AiP); as telecom technology goes higher in frequency towards mmWave 5G, the size of the antenna elements will shrink such that the arrays can be fitted into the package itself. This integration will also help shorten the RF paths and thus minimize the transmission losses. AiP will need low-loss materials for the substrates, redistribution layers, electromagnetic interference (EMI) shielding, mold underfill (MUF) materials, and more.
 
Figure 2: Scope of the low-loss materials covered in the report, source: IDTechEx
 
We highlight promising low-loss materials for 5G devices. This includes:
  • Low-loss thermoset materials: thermoset materials dominate the market for 3G/4G network devices. However, the high Dk and Df restrict their use in mmWave 5G. We focus on the strategies and R&D effort from key materials suppliers to reduce the Dk and Df for these materials
  • Polytetrafluoroethylene (PTFE): one of the most common materials for high-frequency applications such as automotive radar systems, high speed/high frequency (HS/HF) board and connectors
  • Liquid crystal polymers (LCP): it has been adapted to make flexible board for smartphone antennas. The market will continue to grow and expand into other applications
  • Low temperature co-fired ceramic (LTCC): the low Df and wide range of Dk for LTCC will accelerate the use of LTCC based components such as compact high frequency filters
  • Others: in order to optimise the performance for 5G systems, a variety of materials will be used, such as hydrocarbons, poly (p-phenylene ether) (PPE or PPO), and glass. Those alternative materials will take over a large share of the low-loss 5G materials market
 
Additionally, though the 6G spectrum is years from being allocated, research institutions and materials suppliers are already exploring the material requirements needed to meet the next generation of telecommunication technologies. This report explores the approaches to achieve even lower Df/Dk and the potential 6G applications, like reconfigurable intelligent surfaces (RIS).
 
Ten-year granular forecasts focusing on low-loss materials area and revenue for 5G devices are presented in this report, with over five forecast lines. The forecasts are segmented by:
  • Frequency: sub-6 GHz 5G and mmWave 5G
  • Market applications: low-loss materials for infrastructure, smartphone and customer premises equipment (CPE).
  • Materials type: exploring the evolution of low-loss materials for both sub-6GHz 5G and mmWave 5G
 
Figure 3: Forecast and growth rate of low-loss materials for 5G, source: IDTechEx
 
Based on materials trends, we forecast the low-loss materials revenue for 5G devices from 2024 to 2034. The total market will hit US$2.1 billion USD by 2034. The report contains a comprehensive analysis of different low-loss materials from different perspectives such as performance, technology trends, potential, and bottlenecks for large scale deployment. Importantly, the report presents an unbiased analysis of primary data gathered via our interviews with players across the supply chain, and it builds on our large database of 5G infrastructure and user equipment data.
 
Key questions answered in this report:
  • Which low-loss materials are the incumbents in each 5G application?
  • Which low-loss materials are emerging for each 5G application?
  • What are the advantages and disadvantages for each material type in 5G?
  • Who are the key suppliers for low-loss materials in 5G?
  • What is the current status of low-loss materials for 6G?
  • How much area of low-loss material for 5G will be sold between 2024 and 2034?
  • How will sales of low-loss materials evolve by frequency and material type?
  • Which 5G application will drive growth for low-loss materials?
 
Key aspects
 
This report provides extensive information and analysis on the major materials, players, and trends for low-loss materials for the 5G and 6G markets.
 
Material trends for low-loss materials and manufacturer analysis:
  • Identification of incumbent and emerging low-loss materials
  • Analysis of materials used in different applications (i.e. printed circuit boards, filters, antennas, packaging, etc.)
  • Benchmarking of dielectric properties of commercialized low-loss materials in different material categories
  • Identification of critical material suppliers for different material categories
  • Discussion of growth drivers and limitations for different material categories in different applications: 5G base stations, 5G smartphone antennas, 5G CPEs
  • Discussion of emerging technologies for 5G and their low-loss materials: antenna-in-package, advanced semiconductor packaging, ink-based EMI shielding, etc.
  • Analysis of low-loss materials for 6G and current status
 
Market Forecasts & Analysis:
  • 10-year granular market forecasts for low-loss materials for 5G, segmented by frequency, application, and material type
  • 10-year market forecasts for low-loss materials for three 5G applications: 5G base stations, CPEs, smartphones
  • Analysis of 5G deployment and material trends for three 5G applications
Report MetricsDetails
CAGRThe global market for low-loss materials for 5G applications will grow by 30.6% from 2024 to 2034 to reach US$2.1 billion in market size.
Forecast Period2024 - 2034
Forecast UnitsThousands of square meters, millions of USD
Regions CoveredWorldwide
Segments CoveredFrequency (sub-6GHz vs mmWave 5G), Material Type (polyimide, epoxy, PTFE, LCP, etc.), Component Type (antenna, beamforming components, etc.)
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.5G, next generation cellular communications network
1.2.Two types of 5G: Sub-6 GHz and mmWave
1.3.Summary: Global trends and new opportunities in 5G/6G
1.4.Updates on mmWave 5G deployment by region
1.5.Updates on mmWave 5G deployment by region
1.6.New opportunities for low-loss materials in mmWave 5G
1.7.Low-loss materials for 5G/6G discussed in this report
1.8.Applications of low-loss materials in semiconductor and electronics packaging
1.9.Evolution of low-loss materials used in different applications
1.10.Evolution of organic PCB materials for 5G
1.11.Benchmark of commercial low-loss organic laminates @ 10 GHz
1.12.Benchmark of LTCC and glass materials
1.13.Benchmarking of commercial low-loss materials for 5G PCBs/components
1.14.Status and outlook of commercial low-loss materials for 5G PCBs/components
1.15.Key low-loss materials supplier landscape
1.16.Packaging trends for 5G and 6G connectivity
1.17.Packaging trends for 5G and 6G connectivity
1.18.Benchmark of low loss materials for AiP
1.19.Overview: Redistribution layers in advanced semiconductor packages for 5G smartphones
1.20.IDTechEx outlook of low-loss materials for 6G
1.21.Forecast of low-loss materials for 5G: Area and revenue
1.22.Forecast of low-loss materials for 5G segmented by frequency
1.23.Forecast of low-loss materials for 5G segmented by material type: Revenue and area
1.24.Market discussion: Low-loss materials for 5G base stations
1.25.Market discussion: Low-loss materials for 5G
1.26.Market discussion: Low-loss materials for 5G smartphone antennas
1.27.Market discussion: Low-loss materials for 5G CPEs
1.28.Conclusions
2.INTRODUCTION
2.1.Terms and definitions
2.1.1.IDTechEx definitions of "substrate"
2.1.2.IDTechEx definitions of "package"
2.1.3.Glossary of abbreviations
2.2.Introduction to 5G
2.2.1.Evolution of mobile communications
2.2.2.5G commercial/pre-commercial services (2022)
2.2.3.5G, next generation cellular communications network
2.2.4.5G standardization roadmap
2.2.5.Two types of 5G: Sub-6 GHz and mmWave
2.2.6.5G network deployment strategy
2.2.7.Low, mid-band 5G is often the operator's first choice to provide 5G national coverage
2.2.8.Approaches to overcome the challenges of 5G limited coverage
2.2.9.5G Commercial/Pre-commercial Services by Frequency
2.2.10.5G mmWave commercial/pre-commercial services (Sep. 2022)
2.2.11.Mobile private networks landscape - By frequency
2.2.12.Updates on mmWave 5G deployment by region
2.2.13.Updates on mmWave 5G deployment by region
2.2.14.The main technique innovations in 5G
2.2.15.5G for mobile consumers market overview
2.2.16.5G for industries overview
2.2.17.5G supply chain overview
2.2.18.5G user equipment player landscape
2.2.19.5G for home: Fixed wireless access (FWA)
2.2.20.5G Customer Premise Equipment (CPE)
2.2.21.Summary: Global trends and new opportunities in 5G
2.3.Introduction to low-loss materials for 5G
2.3.1.Overview of challenges, trends, and innovations for high frequency 5G devices
2.3.2.New opportunities for low-loss materials in mmWave 5G
2.3.3.Applications of low-loss materials in semiconductor and electronics packaging
2.3.4.Anatomy of a copper clad laminate
2.3.5.Applications of low-loss materials: Beamforming system in 5G base station
2.3.6.Applications of low-loss materials: PCBs in 5G CPEs
2.3.7.Applications for low-loss materials: mmWave 5G antenna module for smartphones
2.3.8.Applications for low-loss materials: Semiconductor packages
2.3.9.Roadmap of Df/Dk development across all packaging materials for mmWave 5G
3.LOW-LOSS MATERIALS AT THE PRINTED CIRCUIT BOARD (PCB) AND COMPONENT LEVEL
3.1.Introduction
3.1.1.Overview of low-loss materials for PCBs and semiconductor packages
3.1.2.Five important metrics impacting low-loss materials selection
3.2.Low-loss organic laminate overview
3.2.1.Electric properties of common polymers
3.2.2.Thermoplastics vs thermosets
3.2.3.Thermoplastics vs thermosets for 5G
3.2.4.Evolution of organic PCB materials for 5G
3.2.5.Innovation trends for organic high frequency laminate materials
3.2.6.Hybrid system: Cost reduction for high frequency circuit boards
3.2.7.Key suppliers for high frequency and high-speed copper clad laminate
3.2.8.Benchmark of commercialised low-loss organic laminates
3.2.9.Benchmark of commercial low-loss organic laminates @ 10 GHz
3.2.10.Other examples of low-loss laminates
3.3.Low-loss thermosets
3.3.1.Strategies to achieve lower dielectric loss and trade-offs
3.3.2.Factors affecting dielectric loss: Polarizability and molar volume
3.3.3.Factors affecting dielectric loss: curing temperature
3.3.4.Strategies to reduce Dk and Df: Low polarity functional groups or atomic bonds
3.3.5.Strategies to reduce Dk and Df: Additives
3.3.6.Strategies to reduce Dk: Bulky structures
3.3.7.Strategies to reduce Dk: Porous structures
3.3.8.Strategies to reduce Df: Rigid structures
3.3.9.Where is the limit of Dk for modified thermosets?
3.3.10.The influence of Dk and substrate choice on PCB feature size
3.3.11.The challenge of thinning the PCB-substrate for high frequency applications
3.3.12.Low-loss thermoset suppliers: Ajinomoto Group's Ajinomoto Build Up Film (ABF)
3.3.13.Low-loss thermoset suppliers: Taiyo Ink's epoxy-based build-up materials
3.3.14.Low-loss thermoset suppliers: Taiyo Ink's epoxy-based build-up materials
3.3.15.Low-loss thermoset suppliers: DuPont's Pyralux laminates
3.3.16.Low-loss thermoset suppliers: Laird's ECCOSTOCK
3.3.17.Low-loss thermoset suppliers: Panasonic's R5410
3.3.18.Low-loss thermoset suppliers: JSR Corp's aromatic polyether (HC polymer)
3.3.19.Low-loss thermoset suppliers: Showa Denko's polycyclic thermoset
3.3.20.Low-loss thermoset laminate suppliers: Mitsubishi Gas Chemical's BT laminate
3.3.21.Low-loss thermoset laminate suppliers: Isola
3.3.22.Low-loss thermoset laminate suppliers: Isola
3.4.Low-loss thermoplastics: Liquid crystal polymers
3.4.1.Liquid crystal polymers (LCP)
3.4.2.LCP classification
3.4.3.LCP antennas in smartphones and FPCBs
3.4.4.Liquid crystal polymer supply chain
3.4.5.Liquid crystal polymer supply chain for printed circuit boards: Companies
3.4.6.LCP types and key suppliers
3.4.7.LCP as an alternative to PI for flexible printed circuit boards
3.4.8.LCP vs PI: Dk and Df
3.4.9.LCP vs PI: Moisture
3.4.10.LCP vs PI: Flexibility
3.4.11.LCP vs MPI: Cost
3.4.12.LCP vs MPI: FCCL signal loss
3.4.13.Commercial LCP and LCP-FCCL products
3.4.14.Next-generation materials for smartphone antennas
3.4.15.Evolution of smartphone antennas from 2G to mmWave 5G
3.4.16.LCP product suppliers: Murata's MetroCirc antennas for smartphones
3.4.17.LCP product suppliers: Career Technology
3.4.18.LCP product suppliers: Avary/ZDT
3.4.19.LCP product suppliers: KGK (Kyodo Giken Kagaku)
3.4.20.LCP product suppliers: SYTECH's LCP-FCCL for mmWave 5G applications
3.4.21.LCP product suppliers: iQLP
3.4.22.LCP product suppliers: IQLP and DuPont's LCP-PCB
3.5.Thermoplastic polymer: PTFE
3.5.1.An introduction to fluoropolymers and PTFE
3.5.2.Key properties of PTFE to consider for 5G applications
3.5.3.Effect of crystallinity on the dielectric properties of PTFE-based laminates
3.5.4.Key applications of PTFE in 5G
3.5.5.Hybrid couplers using PTFE as a substrate
3.5.6.Ceramic-filled vs glass-filled PTFE laminates
3.5.7.Concerns of using PTFE-based laminates for high frequency 5G
3.5.8.PTFE laminate suppliers: Rogers' Advanced Connectivity Solutions
3.5.9.PTFE laminate suppliers: Rogers' ceramic-filled PTFE laminates
3.5.10.PTFE laminate suppliers: Taconic
3.5.11.PTFE laminate suppliers: SYTECH
3.6.Sustainability in low-loss materials: PTFE
3.6.1.Introduction to PFAS
3.6.2.Concerns with PFAS
3.6.3.Regulatory outlook for PFAS: EU
3.6.4.Regulatory outlook for PFAS: USA
3.6.5.Dutch court ruling on environmental damage caused by PFAS materials
3.6.6.Regulations on PFAS as relevant to low-loss materials
3.7.Other organic materials
3.7.1.Poly(p-phenylene oxide) (PPO): Sabic
3.7.2.Poly(p-phenylene ether) (PPE): Panasonic's MEGTRON
3.7.3.Modified poly(p-phenylene ether) (mPPE): Asahi Kasei's XYRON
3.7.4.Polyphenylene sulfide (PPS): Solvay's materials for base station antennas
3.7.5.Polyphenylene sulfide (PPS): Toray's transparent, heat-resistant film
3.7.6.Polybutylene terephthalate (PBT): Toray
3.7.7.Hydrocarbon-based laminates
3.7.8.Polymer aerogels as antenna substrates
3.7.9.Aerogel suppliers: Blueshift's AeroZero for polyimide aerogel laminates
3.7.10.Wood-derived cellulose nanofibril
3.7.11.Polycarbonate (PC): Covestro's materials for injection-molded enclosures and covers
3.8.Inorganic materials
3.9.Ceramics/low-temperature co-fired ceramics (LTCC)
3.9.1.5G application areas for ceramics/LTCC
3.9.2.Introduction to ceramic materials
3.9.3.The evolution from HTCC to LTCC
3.9.4.Benchmark of LTCC materials
3.9.5.Dielectric constant: Stability vs frequency for different inorganic substrates (LTCC, glass)
3.9.6.Temperature stability of dielectric parameters of HTCC and LTCC alumina
3.9.7.LTCC suppliers: Ferro
3.9.8.LTCC suppliers: DuPont
3.9.9.LTCC and HTCC-based substrates
3.9.10.HTCC metal-ceramic packages
3.9.11.LTCC substrate for RF transitions
3.9.12.Production challenges of multilayer LTCC package
3.9.13.LTCC suppliers: Kyocera's LTCC-based packages
3.9.14.LTCC suppliers: Kyocera's LTCC-based packages
3.9.15.LTCC suppliers: Kyocera's LTCC-based products and development projects
3.9.16.Need for filter technologies beyond SAW/BAW
3.9.17.Filter technologies compatible with mmWave 5G
3.9.18.Benchmark of selected filter technologies for mmWave 5G applications
3.9.19.Materials for transmission-line filters
3.9.20.Role of LTCC and glass for future RF filter substrates
3.9.21.LTCC suppliers: NGK's multi-layer LTCC filters
3.9.22.LTCC suppliers: Minicircuits' multilayer LTCC filter
3.9.23.LTCC suppliers: Sunway communication's phased array antenna for mmWave 5G phones
3.9.24.LTCC suppliers: Tecdia's thin film and ceramic capacitors
3.10.Glass
3.10.1.Glass substrate
3.10.2.Benchmark of various glass substrates
3.10.3.Glass suppliers: JSK's HF-F for low transmission loss laminates
3.10.4.Glass suppliers: SCHOTT's FLEXINITY connect
3.10.5.Glass suppliers: AGC/ALCAN System's transparent antennas for windows
3.10.6.Glass as a filter substrate
3.10.7.Glass integrated passive devices (IPD) filter for 5G by Advanced Semiconductor Engineering
3.10.8.Summary of low-loss materials for PCBs and RF components
3.10.9.Benchmarking of commercial low-loss materials for 5G PCBs/components
3.10.10.Status and outlook of commercial low-loss materials for 5G PCBs/components
3.10.11.Property overview of low-loss materials
3.10.12.Options for mmWave filter substrates
4.LOW-LOSS MATERIALS AT THE PACKAGE-LEVEL
4.1.Overview of electronic and semiconductor packaging
4.1.1.Overview of general electronic packaging
4.1.2.Overview of advanced semiconductor packaging
4.1.3.From 1D to 3D semiconductor packaging
4.1.4.Overview of semiconductor packaging technologies
4.1.5.Packaging trends for 5G and 6G connectivity
4.2.System in package (SiP)
4.2.1.Heterogeneous integration solutions
4.2.2.Overview of System on Chip (SOC)
4.2.3.Overview of Multi-Chip Module (MCM)
4.2.4.System in Package (SiP)
4.2.5.Analysis of System in Package (SiP)
4.2.6.Trend of increasing SiP content in electronics
4.3.Towards AiP (antenna in package)
4.3.1.High frequency integration and packaging trend
4.3.2.Qualcomm: Antenna in package design (antenna on a substrate with flip chipped ICs)
4.3.3.Evolution of Qualcomm mmWave AiP
4.3.4.High frequency integration and packaging: Requirements and challenges
4.3.5.Three methods for mmWave antenna integration
4.3.6.Benchmarking of antenna packaging technologies
4.3.7.AiP development trend
4.3.8.Two types of AiP structures
4.3.9.Two types of IC-embedded technology
4.3.10.Two types of IC-embedded technology
4.3.11.Key market players for IC-embedded technology by technology type
4.3.12.Low loss materials: Key for 5G mmWave AiP
4.3.13.Choices of low-loss materials for 5G mmWave AiP
4.3.14.Benchmark of low loss materials for AiP
4.3.15.Organic materials: the mainstream choice for substrates in AiP
4.3.16.LTCC AiP for 5G: TDK
4.3.17.Glass substrate AiP for 5G: Georgia Tech
4.3.18.Summary of AiP for 5G
4.4.Epoxy molded compounds (EMC) and mold under fill (MUF)
4.4.1.What are EMC and MUFs?
4.4.2.Epoxy Molding Compound (EMC)
4.4.3.Key parameters for EMC materials
4.4.4.Importance of dielectric constant for EMC used in 5G applications
4.4.5.Experimental and commercial EMC products with low dielectric constant
4.4.6.Epoxy resin: Parameters of different resins and hardener systems
4.4.7.Fillers for EMC
4.4.8.EMC for warpage management
4.4.9.Supply chain for EMC materials
4.4.10.EMC innovation trends for 5G applications
4.4.11.High warpage control EMC for FO-WLP
4.4.12.Possible solutions for warpage and die shift
4.4.13.EMC suppliers: Sumitomo Bakelite
4.4.14.EMC suppliers: Sumitomo Bakelite
4.4.15.EMC suppliers: Kyocera's EMCs for semiconductors
4.4.16.EMC suppliers: Samsung SDI
4.4.17.EMC suppliers: Showa Denko
4.4.18.EMC suppliers: Showa Denko's sulfur-free EMC
4.4.19.EMC suppliers: KCC Corporation
4.4.20.Molded underfill (MUF)
4.4.21.MUF critical for flip clip molding technology
4.4.22.Liquid molding compound (LMC) for compression molding
4.5.Ink-based EMI shielding
4.5.1.What is electromagnetic interference (EMI) shielding?
4.5.2.Package shielding involves compartmental and conformal shielding
4.5.3.What materials are used for EMI shielding?
4.5.4.Impact of changes in semiconductor package design
4.5.5.Key trends for EMI shielding implementation
4.5.6.Comparison of sputtering and spraying
4.5.7.Process flow for competing printing methods
4.5.8.Supplier details confirm that sputtering is the dominant approach
4.5.9.Value chain for conformal package-level shielding
4.5.10.Sputtering for package-level EMI shielding
4.5.11.Conclusions: Spraying/printing for package-level EMI shielding
4.5.12.Other deposition methods for package-level EMI shielding
4.5.13.Early commercial example of package-level shielding
4.5.14.Conformal package-level EMI shielding accompanied by compartmentalization
4.5.15.Smartphone deployment example: Conformal shielding in Apple iPhone 12
4.5.16.Suppliers targeting ink-based conformal EMI shielding
4.5.17.Ink-based EMI shielding suppliers: Henkel
4.5.18.Ink-based EMI shielding suppliers: Duksan
4.5.19.Ink-based EMI shielding suppliers: Ntrium
4.5.20.Ink-based EMI shielding suppliers: Clariant
4.5.21.Ink-based EMI shielding suppliers: Fujikura Kasei
4.5.22.Spray machines used in conformal EMI shielding
4.5.23.Particle size and morphology influence EMI shielding
4.5.24.EMI shielding with particle-free inks
4.5.25.Heraeus' inkjet printed particle-free Ag inks
4.5.26.Key trend for EMI shielding: Compartmentalization of complex packages
4.5.27.The challenge of magnetic shielding at low frequencies (I)
4.5.28.The challenge of magnetic shielding at low frequencies (II)
5.LOW-LOSS MATERIALS AT THE WAFER-LEVEL
5.1.Redistribution layer (RDL)
5.2.Redistribution layer (RDL) vs silicon
5.3.Importance of low-loss RDL materials for different packaging technologies
5.4.Low-loss RDL materials for mmWave: TSMC's InFO AiP
5.5.Polymer dielectric materials for RDL
5.6.Key parameters for organic RDL materials for next generation 2.5D fan-out packaging
5.7.Benchmark of organic dielectrics for RDL
5.8.RDL-dielectric suppliers: Toray's polyimide materials
5.9.RDL-dielectric suppliers: DuPont's Arylalkyl polymers
5.10.RDL-dielectric suppliers: DuPont's InterVia
5.11.RDL-dielectric suppliers: HD Microsystems
5.12.RDL-dielectric suppliers: Taiyo Ink's epoxy-based high-density RDL
5.13.RDL-dielectric suppliers: Ajinomoto's nanofiller ABF
5.14.RDL-dielectric supplier: Showa Denko
5.15.Market for low-loss RDLs - Advanced semiconductor packages for 5G smartphones
5.16.Overview: Redistribution layers in advanced semiconductor packages for 5G smartphones
6.LOW-LOSS MATERIALS FOR 6G
6.1.Overview
6.1.1.Evolution of mobile communications
6.1.2.5G/6G development and standardization roadmap
6.1.3.IDTechEx outlook for 6G
6.1.4.6G spectrum - Which bands are considered?
6.1.5.Spectrum outlook from 2G to 6G
6.1.6.Overview of potential 6G services
6.1.7.6G - An overview of key applications
6.1.8.Overview of land-mobile service applications in the frequency range 275-450 GHz
6.1.9.Summary: Global trends and new opportunities in 6G
6.1.10.Technical innovation comparison between 5G and 6G
6.1.11.IDTechEx outlook of low-loss materials for 6G
6.1.12.Research approaches for 6G low-loss materials by material category
6.1.13.RDL materials for 6G
6.1.14.Polyimide films for 6G
6.1.15.Thermoplastics for 6G: Georgia Tech
6.1.16.PTFE for 6G: Yonsei University, GIST
6.1.17.PPS for 6G: Sichuan University
6.1.18.Thermosets for 6G: ITEQ Corporation, INAOE
6.1.19.PPE for 6G: Taiyo Ink, Georgia Institute of Technology
6.1.20.Silicate materials for 6G: University of Oulu, University of Szeged
6.1.21.Silicate materials for 6G: Aalborg University, Penn State
6.1.22.Silicate materials for 6G: Tokyo Institute of Technology, AGC
6.1.23.Glass for 6G: Georgia Tech
6.1.24.Glass interposers for 6G
6.1.25.LTCC for 6G: Fraunhofer IKTS
6.1.26.Ceramics for 6G: overview
6.1.27.Alumina fillers for 6G: National Institute of Advanced Industrial Science and Technology
6.1.28.Sustainable materials for 6G: University of Oulu
6.1.29.Metal interposers for 6G: Cubic-Nuvotronics
6.1.30.Roadmap for development of low-loss materials for 6G
6.1.31.Roadmap for development of low-loss materials for 6G
6.1.32.Standards for low-loss materials for 6G
6.2.Radio-frequency metamaterials for 6G
6.2.1.What is a metamaterial?
6.2.2.Segmenting the metamaterial landscape
6.2.3.Metamaterials for 6G: Reconfigurable intelligent surfaces (RIS)
6.2.4.Key drivers for reconfigurable intelligent surfaces in telecommunications
6.2.5.The current status of reconfigurable intelligent surfaces (RIS)
6.2.6.Key takeaways for RIS
6.2.7.Materials selection for RF metamaterials: Introduction
6.2.8.Operational frequency ranges by application
6.2.9.Comparing relevant substrate materials at low frequencies
6.2.10.Comparing relevant substrate materials at high frequencies
6.2.11.Identifying suitable materials for active RF metamaterials near THz
6.2.12.PP and PTFE show better performance than PET
6.2.13.RIS for 5G/6G: Suitable RF metamaterials
6.2.14.Metamaterials in RIS for 5G/6G: SWOT
7.FORECASTS
7.1.Forecast methodology and scope
7.2.Low-loss material forecasts for 5G
7.2.1.Forecast of low-loss materials for 5G: Area and revenue
7.2.2.Forecast of low-loss materials for 5G segmented by material type: Revenue and area
7.2.3.Forecast of low-loss materials for 5G segmented by frequency
7.2.4.Market discussion: Low-loss materials for 5G
7.3.Low-loss material forecasts for 5G infrastructure
7.3.1.Forecast of low-loss materials for 5G base stations segmented by frequency
7.3.2.Forecast of low-loss materials for 5G base stations segmented by material
7.3.3.Market discussion: Low-loss materials for 5G base stations
7.3.4.Forecast of low-loss materials for 5G base stations segmented by components
7.4.Low-loss material forecasts for 5G smartphones
7.4.1.Forecast of low-loss materials for 5G smartphone antennas segmented by frequency
7.4.2.Forecast of low-loss materials for 5G smartphone antennas segmented by material
7.4.3.Market discussion: Low-loss materials for 5G smartphone antennas
7.5.Low-loss material forecasts for 5G customer premises equipment (CPEs)
7.5.1.Forecast of low-loss materials for 5G CPEs segmented by frequency: Area and revenue
7.5.2.Forecast of low-loss materials for 5G CPEs segmented by material: Area and revenue
7.5.3.Market discussion: Low-loss materials for 5G CPEs
8.CONCLUSION
8.1.Conclusions
9.COMPANY PROFILES
10.APPENDIX
10.1.Forecast of low-loss materials for 5G base stations segmented by material and component
10.2.Forecast for low-loss materials for 5G - Segmented by frequency and application
10.3.Forecast of low-loss materials for 5G smartphones segmented by material
10.4.Forecast of low-loss materials for 5G CPEs segmented by material
10.5.Forecast of low-loss materials for 5G segmented by material
 

価格および注文方法

5G/6G向け低損失材料 2024-2034年:市場、トレンド、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥900,000
電子版_PDF(ユーザー 6-10名)
¥1,260,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,020,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,380,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 380
フォーキャスト 2034
発行日 Jan 2024
ISBN 9781835700136
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry