1. | EXECUTIVE SUMMARY |
1.1. | Thermal Runaway and Fires in EVs |
1.2. | Battery Fires and Related Recalls (automotive) |
1.3. | Automotive Fire Incidents: OEMs and Situations |
1.4. | EV Fires: When do They Happen? |
1.5. | Conclusions on Solid-state Battery Safety |
1.6. | Summary of Na-ion Safety |
1.7. | Regulations |
1.8. | Cell Format Market Share |
1.9. | Drivers and Challenges for Cell-to-pack |
1.10. | Thermal Runaway in Cell-to-pack |
1.11. | Fire Protection Materials: Main Categories |
1.12. | Material Comparison |
1.13. | Market Shares in 2023 and 2034 |
1.14. | Density vs Thermal Conductivity - Thermally Insulating |
1.15. | Material Intensity (kg/kWh) |
1.16. | Pricing Comparison in a Cylindrical Cell Battery (inter-cell) |
1.17. | Pricing Comparison in a Pouch Cell Battery (inter-cell) |
1.18. | Pricing Comparison in a Prismatic Cell Battery (inter-cell) |
1.19. | Pricing Comparison in a Battery (pack-level) |
1.20. | Cell-level Fire Protection Materials Forecast (mass) |
1.21. | Pack-level Fire Protection Materials Forecast (mass) |
1.22. | Total Fire Protection Materials Forecast (mass) |
1.23. | Total Fire Protection Materials Forecast (value) |
1.24. | Total Fire Protection Materials by Vehicle (value) |
2. | INTRODUCTION |
2.1. | Overview |
2.1.1. | Thermal Runaway and Fires in EVs |
2.2. | Fires and Recalls in EVs |
2.2.1. | Battery Fires and Related Recalls (automotive) |
2.2.2. | GM's Bolt Recall |
2.2.3. | Hyundai Kona Recall |
2.2.4. | VW PHEV Recall |
2.2.5. | Ford Kuga PHEV Recall |
2.2.6. | Automotive Fire Incidents: OEMs and Situations |
2.2.7. | Electric Scooter Fires in India |
2.2.8. | Electric Bus Fires |
2.2.9. | EV Fires Compared to ICEs (1) |
2.2.10. | EV Fires Compared to ICEs (2) |
2.2.11. | Issues with EV and ICE Fire Comparisons |
2.2.12. | Severity of EV Fires |
2.2.13. | EV Fires: When do They Happen? |
2.3. | Causes and Stages of Thermal Runaway |
2.3.1. | Causes of Failure |
2.3.2. | The Nail Penetration test |
2.3.3. | Stages of Thermal Runaway (1) |
2.3.4. | Stages of Thermal Runaway (2) |
2.3.5. | LiB Cell Temperature and Likely Outcome |
2.3.6. | Cell Chemistry and Stability |
2.3.7. | Cell Chemistry Impact on Fire Protection |
2.3.8. | Cathode Market Share for Li-ion in EVs (2015-2034) |
2.3.9. | Thermal Runaway Propagation |
2.3.10. | The Impact of Solid-state Batteries |
2.3.11. | Are Solid-state Batteries Safer? |
2.3.12. | Conclusions on Solid-state Battery Safety |
2.3.13. | Na-ion Battery Safety |
2.3.14. | 0 V Capability of Na-ion Systems |
2.3.15. | Summary of Na-ion Safety |
2.4. | Regulations |
2.4.1. | Regulations |
2.4.2. | China |
2.4.3. | Europe |
2.4.4. | Europe (Revision 3, 2022) |
2.4.5. | US |
2.4.6. | UN-GTR20 Phase 2 Standard Act and Beyond |
2.4.7. | Regulation Landscape |
2.4.8. | India |
2.4.9. | What Does it all Mean for EV Battery Design? |
3. | CELL AND PACK DESIGN |
3.1. | Introduction |
3.1.1. | Cell Types |
3.1.2. | Which Cell Format to Choose? |
3.1.3. | Cell Format Market Share |
3.1.4. | Li-ion Batteries: from Cell to Pack |
3.1.5. | What's in a Battery Module? (pouch/prismatic) |
3.1.6. | What's in a Battery Module? (cylindrical) |
3.1.7. | What's in an EV Battery Pack? |
3.2. | Cell-to-Pack, Cell-to-Chassis, and Large Cell Formats |
3.2.1. | What is Cell-to-pack? |
3.2.2. | Drivers and Challenges for Cell-to-pack |
3.2.3. | What is Cell-to-chassis/body? |
3.2.4. | Gravimetric Energy Density and Cell-to-pack Ratio |
3.2.5. | Volumetric Energy Density and Cell-to-pack Ratio |
3.2.6. | Outlook for Cell-to-pack & Cell-to-body Designs |
3.2.7. | Thermal Runaway in Cell-to-pack |
3.2.8. | Material Intensity Changes in Cell-to-pack |
4. | FIRE PROTECTION MATERIALS |
4.1. | Introduction |
4.1.1. | What are Fire Protection Materials? |
4.1.2. | Thermally Conductive or Thermally Insulating? |
4.1.3. | Fire Protection Materials: Main Categories |
4.1.4. | Composition and Application of Each Material Category |
4.1.5. | Advantages and Disadvantages |
4.1.6. | Market Maturity, OEM Use-cases, and Suppliers |
4.1.7. | Material Comparison |
4.1.8. | Material Market Shares 2023 |
4.1.9. | Market Shares in 2023 and 2034 |
4.2. | Material Testing for Thermal Runaway |
4.2.1. | How to Screen Materials for Thermal Runaway |
4.2.2. | UL Torch and Grit Test |
4.2.3. | UL BETR |
4.3. | Material Benchmarking: Thermal, Electrical, and Mechanical Properties |
4.3.1. | Thermal Conductivity Comparison |
4.3.2. | Density Comparison |
4.3.3. | Density vs Thermal Conductivity - Thermally Insulating |
4.3.4. | Density vs Thermal Conductivity - Cylindrical Cell Systems |
4.3.5. | Dielectric Strength Comparison |
4.3.6. | Fire Protection Temperature Comparison |
4.3.7. | Material Intensity (kg/kWh) |
4.4. | Material Benchmarking: Costs |
4.4.1. | Pricing Comparison: Volumetric and Gravimetric |
4.4.2. | Pricing Comparison in a Cylindrical Cell Battery (inter-cell) |
4.4.3. | Pricing Comparison in a Pouch Cell Battery (inter-cell) |
4.4.4. | Pricing Comparison in a Prismatic Cell Battery (inter-cell) |
4.4.5. | Pricing Comparison in a Battery (pack-level) |
4.5. | Ceramics and Other Non-Wovens |
4.5.1. | Typical Properties of Ceramic Blankets/papers |
4.5.2. | Challenges with Ceramic Blankets |
4.5.3. | 3M |
4.5.4. | Alkegen |
4.5.5. | Dongguan Taiya Electronic Technology Co., Ltd. |
4.5.6. | Luyang Energy-Saving Materials Co., Ltd. |
4.5.7. | MAFTEC Concept (EDAG, Mitsubishi Chemical Group, Kreisel) |
4.5.8. | Morgan Advanced Materials |
4.6. | Mica |
4.6.1. | Muscovite and Phlogopite Mica |
4.6.2. | Typical Properties of Mica Sheets |
4.6.3. | Challenges with Mica |
4.6.4. | Asheville Mica |
4.6.5. | Axim Mica |
4.6.6. | COGEBI |
4.6.7. | Elmelin |
4.6.8. | Von Roll |
4.7. | Aerogels |
4.7.1. | Why aerogels? |
4.7.2. | Aerogels |
4.7.3. | Concerns for Aerogels in EV Batteries and How They're Addressed |
4.7.4. | Historic Uptake |
4.7.5. | Current Applications of Aerogels in China |
4.7.6. | Current Applications of Aerogels in China (2) |
4.7.7. | Aspen Aerogels |
4.7.8. | JIOS Aerogel |
4.7.9. | Alkegen |
4.7.10. | Toray |
4.7.11. | SAIC/GM: Aerogels |
4.7.12. | Cabot Corporation |
4.8. | Coatings |
4.8.1. | Coatings (intumescent and other) |
4.8.2. | Challenges for Coatings |
4.8.3. | Henkel |
4.8.4. | H.B. Fuller |
4.8.5. | Parker Lord |
4.8.6. | PPG |
4.8.7. | Sika |
4.8.8. | NeoGraf - Graphite Additives for Reactive Coatings |
4.8.9. | WEVO Chemie |
4.8.10. | Other Examples of EV Battery Fire Protection Coatings |
4.9. | Encapsulants (excluding foams) |
4.9.1. | Encapsulants/potting |
4.9.2. | DEMAK - resin potting for batteries |
4.9.3. | ELANTAS |
4.9.4. | Epoxies, Etc. |
4.9.5. | Huntsman |
4.9.6. | Von Roll |
4.10. | Encapsulating Foams |
4.10.1. | Foams |
4.10.2. | Challenges with Encapsulating Foams |
4.10.3. | Asahi Kasei - Cell Holder Foams |
4.10.4. | Solimide/Polyimide Foam |
4.10.5. | CHT Silicones |
4.10.6. | Dow Silicones |
4.10.7. | Elkem |
4.10.8. | H.B. Fuller |
4.10.9. | Parker Lord |
4.10.10. | Zotefoams - Nitrogen Foam |
4.11. | Compression Pads with Fire Protection |
4.11.1. | Compression Pads |
4.11.2. | Dow |
4.11.3. | Freudenberg Sealing Technology |
4.11.4. | Rogers Corporation |
4.11.5. | Saint-Gobain |
4.12. | Phase Change Materials |
4.12.1. | Phase Change Materials (PCMs) |
4.12.2. | PCM Categories and Pros and Cons |
4.12.3. | Phase Change Materials - Players |
4.12.4. | PCMs - Players in EVs |
4.12.5. | AllCell (Beam Global) |
4.12.6. | PCMs - Use-case and Outlook |
4.13. | Tapes |
4.13.1. | Tapes for Fire Protection |
4.13.2. | ATP Adhesive Systems |
4.13.3. | Avery Denison |
4.13.4. | Coroplast Tape |
4.13.5. | Lohmann Tapes |
4.13.6. | Rogers |
4.13.7. | Tesa Tapes |
4.14. | Polymers as Fire Protection |
4.14.1. | Fire Retardant Additives (1) |
4.14.2. | Fire Retardant Additives (2) |
4.14.3. | How Polymers Can Address Thermal Runaway (1) |
4.14.4. | How Polymers Can Address Thermal Runaway (2) |
4.14.5. | How Polymers Can Address Thermal Runaway (3) |
4.14.6. | Covestro - Flame-retardant Plastics |
4.14.7. | LG Chem - Fire Protection Plastic |
4.15. | Other Fire Protection Materials |
4.15.1. | AIS |
4.15.2. | Elven Technologies |
4.15.3. | Alternative Thermal Barriers |
4.15.4. | 3M - Thermal Barriers |
4.15.5. | ADA Technologies |
4.15.6. | AOK Technology |
4.15.7. | Armacell |
4.15.8. | DuPont - Nomex |
4.15.9. | H.B. Fuller - Flame-resistant Pack Seal |
4.15.10. | HeetShield - Ultra-thin Insulations |
4.15.11. | KULR Technology - NASA's solution |
4.15.12. | Pyrophobic Systems |
4.15.13. | Stokvis Tapes - Fire Protection Materials |
4.15.14. | svt Group |
4.16. | Summary |
4.16.1. | Fire Protection Materials Outlook |
5. | IMMERSION COOLING |
5.1. | Immersion Cooling: introduction |
5.2. | Immersion Cooling Fluids Requirements |
5.3. | Immersion Cooling Architecture |
5.4. | Players: Immersion Fluids for EVs (1) |
5.5. | Players: Immersion Fluids for EVs (2) |
5.6. | Immersion Fluids: Density and Thermal Conductivity |
5.7. | Immersion Fluids: Summary |
5.8. | SWOT Analysis |
5.9. | IDTechEx Outlook |
5.10. | What Does it Mean for Fire Protection Materials? |
6. | FIRE PROTECTION MATERIAL USE-CASES |
6.1. | Use-Cases: Automotive |
6.1.1. | Faraday Future FF91 |
6.1.2. | Ford Mustang Mach-E |
6.1.3. | GAC Aion |
6.1.4. | GMC Hummer EV Example |
6.1.5. | Hyundai E-GMP |
6.1.6. | Jaguar I-PACE |
6.1.7. | Lucid Air |
6.1.8. | MG ZS |
6.1.9. | Mercedes EQS |
6.1.10. | Mercedes GLC300e PHEV |
6.1.11. | Polestar |
6.1.12. | Rivian |
6.1.13. | Tesla 4680 pack |
6.1.14. | Tesla Model 3/Y |
6.1.15. | Tesla Model 3/Y prismatic LFP pack |
6.1.16. | Tesla Model S P85D |
6.1.17. | Tesla Model S Plaid |
6.1.18. | Voyah (Dongfeng) |
6.1.19. | VW MEB Platform |
6.2. | Use-Cases: Heavy Duty and Commercial Vehicles |
6.2.1. | American Battery Solutions |
6.2.2. | Ford Transit |
6.2.3. | Lion Electric - self extinguishing modules |
6.2.4. | Nissan e-NV200 |
6.2.5. | Romeo Power |
6.2.6. | Voltabox |
6.2.7. | Xerotech |
6.2.8. | XING Mobility |
6.3. | Use-Cases: Other |
6.3.1. | Cadenza Innovation - stationary energy storage |
6.3.2. | Hero Maxi (lead-acid) |
6.3.3. | Ola Hyperdrive battery |
7. | BATTERY PACK ENCLOSURES |
7.1. | Impact of Enclosure Material on Fire Protection |
7.2. | Battery Enclosure Materials and Competition |
7.3. | From Steel to Aluminium |
7.4. | Towards Composite Enclosures? |
7.5. | Composite Enclosure EV Examples (1) |
7.6. | Composite Enclosure EV Examples (2) |
7.7. | Alternatives to Phenolic Resins |
7.8. | Are Polymers Suitable Housings? |
7.9. | Plastic Intensive Battery Pack from SABIC |
7.10. | Polymers Replacing Metals |
7.11. | Composites with Fire Protection |
7.12. | Examples of Fire Protection with Composite Enclosure Players |
7.13. | Adding Fire Protection to Composite Parts |
7.14. | Envalior - Plastic Enclosure for HV Battery |
7.15. | Composite Enclosure Outlook |
8. | BUSBARS AND HIGH VOLTAGE CABLE INSULATION |
8.1. | Why Busbars and Cables Need Fire Protection |
8.2. | Busbar Insulation Materials |
8.3. | HV Cable Insulation Operating Temperature Benchmark |
8.4. | Polymer Players in Busbar Insulation (1) |
8.5. | Polymer Players in Busbar Insulation (2) |
8.6. | Polymer Players in Busbar Insulation (3) |
8.7. | Polymer Players in Busbar Insulation (4) |
8.8. | Busbar, Interconnect, and HV Cable Insulation Demand Forecast 2021-2034 (kg) |
9. | FORECASTS |
9.1. | EV Battery Demand Forecast (GWh) |
9.2. | Methodology: Material Intensity (kg/kWh) |
9.3. | Methodology: Cell Formats |
9.4. | Cell-level Fire Protection Materials Forecast (mass) |
9.5. | Pack-level Fire Protection Materials Forecast (mass) |
9.6. | Total Fire Protection Materials Forecast (mass) |
9.7. | Material Pricing |
9.8. | Total Fire Protection Materials Forecast (value) |
9.9. | Fire Protection Materials Forecast by Vehicle Type (mass) |
9.10. | Total Fire Protection Materials by Vehicle (value) |
9.11. | Comparison with Previous Forecasts |
10. | COMPANY PROFILES |
10.1. | ADA Technologies |
10.2. | Aerobel |
10.3. | Aerogel Core Ltd |
10.4. | AllCell Technologies (Beam Global): Phase Change Material for EVs |
10.5. | Amphenol Advanced Sensors |
10.6. | Armacell |
10.7. | Asahi Kasei: Fire Retardant Plastics |
10.8. | Ascend Performance Materials: High Temperature PA66 |
10.9. | Aspen Aerogels: Aerogels for EV Battery Packs |
10.10. | Axalta Coating Systems |
10.11. | Cadenza Innovation |
10.12. | Carrar: Two-Phase Immersion Cooling for EVs |
10.13. | e-Mersiv |
10.14. | Elven Technologies: Fire Protection Materials |
10.15. | Freudenberg Sealing Technologies: EV Inter-Cell Fire Protection |
10.16. | FUCHS: Dielectric Immersion Fluids for EVs |
10.17. | H.B. Fuller: Fire Protection Materials for EV Batteries |
10.18. | IBIH Advanced Materials |
10.19. | JIOS Aerogel |
10.20. | Johnson Controls: Thermal Runaway Detection and Prevention |
10.21. | Keey Aerogel |
10.22. | KULR Technology |
10.23. | LG Chem |
10.24. | Pyrophobic Systems: Fire Protection Materials for EVs |
10.25. | Rogers Corporation: Compression Pads With Fire Protection |
10.26. | WEVO Chemie: Battery Thermal Management Materials |
10.27. | Xerotech |