1. | EXECUTIVE SUMMARY |
1.1. | Overview of electrolyzer technologies |
1.2. | Report focus - electrolyzer materials & components |
1.3. | Annual electrolyzer demand by type (GW) |
1.4. | AWE materials & components summary |
1.5. | AWE materials & components summary |
1.6. | Innovation priorities for AWE materials & components |
1.7. | AWE stack cost & potential in cost reduction |
1.8. | AWE materials & components supplier summary |
1.9. | AWE system suppliers |
1.10. | AWE component supply chain |
1.11. | AWE components market forecast (US$M) |
1.12. | AEMEL materials & components summary |
1.13. | Innovation priorities for AEMEL materials & components |
1.14. | AEMEL stack & anion exchange membrane suppliers |
1.15. | PEMEL & PEMFC component overlap |
1.16. | PEMEL materials & components summary |
1.17. | PEMEL materials & components summary |
1.18. | Innovation priorities for PEMEL materials & components |
1.19. | PEMEL stack cost & potential in cost reduction |
1.20. | PEMEL materials & components supplier summary (1/2) |
1.21. | PEMEL materials & components supplier summary (2/2) |
1.22. | PEMEL stack suppliers |
1.23. | PEMEL component supply chain (1/2) |
1.24. | PEMEL component supply chain (2/2) |
1.25. | PEMEL catalyst loading forecast (g/kW or t/GW) |
1.26. | Will iridium supply limit the growth of PEMEL? |
1.27. | PEMEL components market forecast (US$M) |
1.28. | SOEC materials & components summary |
1.29. | SOEC materials & components summary |
1.30. | Innovation priorities for SOEC materials & components |
1.31. | SOEC stack cost & potential in cost reduction |
1.32. | SOEC materials & components supplier summary |
1.33. | SOEC & SOFC stack suppliers |
1.34. | SOEC component supply chain |
1.35. | SOEC components market forecast (US$M) |
2. | INTRODUCTION |
2.1. | Introduction to the hydrogen economy & green hydrogen |
2.1.1. | The need for unprecedented CO2 emission reductions |
2.1.2. | Hydrogen as a key tool for decarbonization |
2.1.3. | What is driving the hydrogen market? |
2.1.4. | Hydrogen economy and its key components |
2.1.5. | Production: the colors of hydrogen (1/2) |
2.1.6. | Production: the colors of hydrogen (2/2) |
2.1.7. | Why produce green hydrogen? |
2.1.8. | National hydrogen strategies focus on green hydrogen |
2.1.9. | Important competing factors for the green H2 market |
2.2. | Introduction to electrolyzer technologies |
2.2.1. | Overview of electrolyzer technologies |
2.2.2. | Electrolyzer performance characteristics |
2.2.3. | Factors to consider in electrolyzer choice |
2.2.4. | Cost challenges in green hydrogen production |
2.2.5. | Why innovate electrolyzer materials & components? |
2.2.6. | Future trends in the electrolyzer market |
2.3. | Electrochemistry basics |
2.3.1. | Importance of active & stable electrocatalysts |
2.3.2. | Electrocatalyst activity metrics |
2.3.3. | Electrocatalyst stability & efficiency metrics |
2.3.4. | Origin of the volcano plot in electrocatalysis |
3. | ALKALINE WATER ELECTROLYZER (AWE) MATERIALS & COMPONENTS |
3.1. | Overview |
3.1.1. | Alkaline water electrolyzer (AWE) |
3.1.2. | Atmospheric vs pressurized AWEs |
3.1.3. | AWE cell designs - Nel ASA & Accelera (Hydrogenics) |
3.1.4. | Classifications of alkaline electrolyzers |
3.1.5. | US DOE technical targets for AWE |
3.1.6. | AWE materials & components summary |
3.1.7. | AWE materials & components summary |
3.1.8. | Innovation priorities for AWE materials & components |
3.1.9. | AWE stack cost & potential in cost reduction |
3.2. | AWE catalysts & electrodes |
3.2.1. | Cathode: hydrogen evolution reaction (HER) |
3.2.2. | Alkaline HER volcano & cathode catalysts |
3.2.3. | Nickel-based & Raney Ni electrocatalysts |
3.2.4. | Comparison of HER electrocatalysts (1/3) |
3.2.5. | Comparison of HER electrocatalysts (2/3) |
3.2.6. | Comparison of HER electrocatalysts (3/3) |
3.2.7. | Comparison of HER electrocatalysts (4/4) |
3.2.8. | Approaches to improved HER catalyst design |
3.2.9. | Anode: oxygen evolution reaction (OER) |
3.2.10. | OER intermediate steps & scaling relationships |
3.2.11. | Alkaline OER volcano plot & anode catalysts |
3.2.12. | Nickel-based & mixed metal oxide (MMO) anodes |
3.2.13. | Comparison of OER electrocatalysts (1/3) |
3.2.14. | Comparison of OER electrocatalysts (2/3) |
3.2.15. | Comparison of OER electrocatalysts (3/3) |
3.2.16. | Approaches to improved OER catalyst design |
3.2.17. | Bifunctional catalysts for alkaline & seawater electrolysis |
3.2.18. | Considerations in AWE electrode design |
3.2.19. | Metal supports for electrocatalysts |
3.2.20. | Veco - high surface area electrodes |
3.2.21. | Stargate Hydrogen - new ceramic-based electrodes |
3.2.22. | Catalyst coating techniques for electrodes (1/2) |
3.2.23. | Catalyst coating techniques for electrodes (2/2) |
3.2.24. | Electrochemistry of nickel |
3.2.25. | Electrode activation processes |
3.2.26. | Electrode manufacturing case study: Nel ASA (1/2) |
3.2.27. | Electrode manufacturing case study: Nel ASA (2/2) |
3.2.28. | Degradation of electrodes (1/2) |
3.2.29. | Degradation of electrodes (2/2) |
3.2.30. | AWE cathode & anode catalysts summary |
3.3. | AWE diaphragms |
3.3.1. | AWE separator / diaphragm |
3.3.2. | Comparison of common diaphragms |
3.3.3. | Commercial AWE diaphragm - Zirfon (1/2) |
3.3.4. | Commercial AWE diaphragm - Zirfon (2/2) |
3.3.5. | Future directions for AWE separators |
3.3.6. | Improving porous diaphragms (1/2) |
3.3.7. | Improving porous diaphragms (2/2) |
3.4. | AWE bipolar plates, gaskets & stack assembly components |
3.4.1. | Hydrogen embrittlement & compatible metal alloys |
3.4.2. | AWE bipolar plate characteristics |
3.4.3. | AWE bipolar plate materials |
3.4.4. | Other bipolar plate designs |
3.4.5. | AWE gaskets |
3.4.6. | AWE gasket materials (1/2) |
3.4.7. | AWE gasket materials (2/2) |
3.4.8. | AWE cell frame |
3.4.9. | AWE end plates & stack assembly (1/2) |
3.4.10. | AWE end plates & stack assembly (2/2) |
3.4.11. | Röchling Group - PEEK end plates & bolts |
3.5. | Zero-gap AWE materials & components and advanced AWE designs |
3.5.1. | Zero-gap AWE materials & components summary |
3.5.2. | Zero-gap AWE component summary |
3.5.3. | Zero-gap alkaline electrolyzers |
3.5.4. | Motivation for improving the AWE |
3.5.5. | Key innovation focuses for AWE improvement |
3.5.6. | Zero-gap AWE stack design |
3.5.7. | AWE membrane electrode assembly (MEA) |
3.5.8. | Porous transport layers (PTLs) (1/2) |
3.5.9. | Porous transport layers (PTLs) (2/2) |
3.5.10. | De Nora's zero-gap cell design |
3.5.11. | Ion-solvating membranes (ISMs) |
3.5.12. | Polybenzimidazole (PBI) ion-solvating membranes |
3.5.13. | Notable projects developing advanced AWE |
3.5.14. | Other advanced design features |
3.5.15. | Next Hydrogen: new AWE cell architecture |
3.5.16. | AquaHydrex: AWE system redesign |
3.5.17. | Hysata: capillary-fed cell design |
3.5.18. | Hysata: capillary-fed cell design |
3.6. | AWE stack, material & component suppliers |
3.6.1. | AWE materials & components supplier summary |
3.6.2. | AWE system suppliers |
3.6.3. | AWE component supply chain |
3.6.4. | AWE membrane & cell frame |
3.6.5. | AWE gasket / seal suppliers |
3.6.6. | AWE electrodes, catalysts & PTL/GDL suppliers |
3.6.7. | AWE electrodes, catalysts & PTL/GDL suppliers |
3.6.8. | AWE bipolar plate suppliers |
4. | ANION EXCHANGE MEMBRANE ELECTROLYZER (AEMEL) MATERIALS & COMPONENTS |
4.1. | AEMEL materials & components summary |
4.2. | Innovation priorities for AEMEL materials & components |
4.3. | The case for AEMEL development |
4.4. | AEMEL's similarities to AWE & PEMEL |
4.5. | AEMEL catalysts overview |
4.6. | AEMEL catalysts summary |
4.7. | Anion exchange membranes (AEMs) |
4.8. | Anion exchange membrane (AEM) materials |
4.9. | AEM material challenges & prospects |
4.10. | Comparison of commercial AEM materials |
4.11. | Commercial AEM material examples |
4.12. | AEMEL membrane electrode assembly (MEA) |
4.13. | Commercial AEMEL MEA design |
4.14. | Other AEMEL components: GDL/PTL, bipolar plates, sealants, end plates |
4.15. | Enapter - the leading AEMEL company |
4.16. | AEMEL stack & anion exchange membrane suppliers |
5. | PROTON EXCHANGE MEMBRANE ELECTROLYZERS (PEMEL) MATERIALS & COMPONENTS |
5.1. | Overview |
5.1.1. | Proton exchange membrane electrolyzer (PEMEL) |
5.1.2. | US DOE technical targets for PEMEL |
5.1.3. | PEMEL cell design example - Siemens Energy |
5.1.4. | PEMEL & PEMFC component overlap |
5.1.5. | PEMEL materials & components summary |
5.1.6. | PEMEL materials & components summary |
5.1.7. | Innovation priorities for PEMEL materials & components |
5.1.8. | PEMEL stack cost & potential in cost reduction |
5.2. | PEMEL catalysts & electrodes |
5.2.1. | Cathode: hydrogen evolution reaction (HER) |
5.2.2. | Acidic HER volcano & cathode catalysts |
5.2.3. | Commercial platinum on carbon (Pt/C) catalysts |
5.2.4. | Influence of carbon black support on Pt/C |
5.2.5. | Comparison of HER electrocatalysts |
5.2.6. | Future directions for HER catalysts |
5.2.7. | Anode: oxygen evolution reaction (OER) |
5.2.8. | Acidic OER volcano & cathode catalysts |
5.2.9. | Commercial iridium-based catalysts |
5.2.10. | Ir-Ru mixed metal oxide (MMO) catalysts |
5.2.11. | Ames Goldsmith Ceimig case study (1/2) |
5.2.12. | Ames Goldsmith Ceimig - new Ir-Pt OER catalyst |
5.2.13. | Heraeus - new supported IrOx OER catalyst |
5.2.14. | Smoltek - new nanostructured catalysts |
5.2.15. | Comparison of OER electrocatalysts |
5.2.16. | Future directions for OER catalysts |
5.2.17. | Catalyst degradation mechanisms |
5.2.18. | Catalyst degradation examples |
5.2.19. | Electrocatalyst production overview |
5.2.20. | Example Pt/C production process |
5.2.21. | PEMEL cathode & anode catalysts summary |
5.3. | Proton exchange membranes |
5.3.1. | Proton exchange membrane overview |
5.3.2. | Overview of PFSA membranes |
5.3.3. | Overview of PFSA membranes |
5.3.4. | Nafion - the market leading membrane |
5.3.5. | PFSA membrane extrusion casting process |
5.3.6. | PFSA membrane solution casting process |
5.3.7. | PFSA membrane dispersion casting process |
5.3.8. | Nafion properties & grades |
5.3.9. | PFSA membrane property comparison |
5.3.10. | Property benchmarking of alternative membranes |
5.3.11. | Membrane degradation processes overview |
5.3.12. | Membrane degradation processes |
5.3.13. | Membrane degradation processes |
5.3.14. | Pros & cons of Nafion & PFSA membranes |
5.3.15. | Improvements to PFSA membranes |
5.3.16. | Trade-offs in optimizing membrane performance |
5.3.17. | Gore reinforced SELECT membranes |
5.3.18. | Chemours reinforced Nafion membranes |
5.3.19. | Chemours gas recombination catalyst additive research |
5.3.20. | Innovations in PEMFC membranes may influence PEMEL (1/2) |
5.3.21. | Innovations in PEMFC membranes may influence PEMEL (2/2) |
5.3.22. | Alternative polymer materials |
5.3.23. | 1s1 Energy - boron-containing membrane |
5.3.24. | Metal-organic frameworks for membranes |
5.3.25. | Graphene in the membrane |
5.3.26. | Implications of potential PFAS bans |
5.4. | PEMEL porous transport layers (PTLs) & gas diffusion layers (GDLs) |
5.4.1. | Gas diffusion layer (GDL) vs porous transport layer (PTL) |
5.4.2. | PTL/GDL characteristics & materials |
5.4.3. | Cathode GDL: carbon paper |
5.4.4. | Cathode GDL: hydrophobic treatment |
5.4.5. | Wet vs dry GDL performance |
5.4.6. | Cathode GDL production process |
5.4.7. | Cellulosic fiber GDL: No MPL required |
5.4.8. | GDL latest research: focus on dual hydrophobic and hydrophilic behaviour |
5.4.9. | Anode PTL: sintered porous titanium |
5.4.10. | Interactions between PTL & catalyst layer |
5.4.11. | Bekaert - sintered titanium PTL |
5.4.12. | Caplinq - example Ti PTL production process |
5.4.13. | Sintered powder Ti felt production |
5.4.14. | Future directions for anode Ti PTL |
5.5. | PEMEL membrane electrode assembly (MEA) |
5.5.1. | Membrane electrode assembly (MEA) overview |
5.5.2. | PEMEL vs PEMFC membrane electrode assembly |
5.5.3. | MEA functions & requirements |
5.5.4. | Typical catalyst coated membrane (CCM) |
5.5.5. | CCM production technologies |
5.5.6. | Comparison of coating processes |
5.5.7. | Roll-to-roll CCM production processes (1/2) |
5.5.8. | Roll-to-roll CCM production processes (2/2) |
5.5.9. | New research in CCM production |
5.5.10. | Catalyst ink formulation - key considerations |
5.5.11. | Future directions for MEAs: understanding degradation mechanisms |
5.5.12. | Future directions for MEAs: iridium deposition on GDL/PTL using SparkNano's sALD |
5.5.13. | Future directions for MEAs: iridium deposition on GDL/PTL using Toshiba's vacuum sputtering technology |
5.5.14. | Future directions for MEAs: direct membrane deposition (DMD) |
5.5.15. | Future directions for MEAs: H2/O2 recombination layer |
5.6. | PEMEL bipolar plates (BPPs) |
5.6.1. | Bipolar plate functions & characteristics |
5.6.2. | Bipolar plate flow fields |
5.6.3. | Comparison of flow fields |
5.6.4. | Future directions for bipolar plate flow fields |
5.6.5. | Bipolar plate materials overview |
5.6.6. | Metal-based bipolar plate materials |
5.6.7. | Commercial bipolar plate: platinum-coated titanium |
5.6.8. | Gold cathode & platinum anode BPP coating |
5.6.9. | Ionbond - new coating technology |
5.6.10. | Ti-coated stainless steel BPPs |
5.6.11. | Future coatings for metal bipolar plates |
5.6.12. | Carbon composite bipolar plate materials |
5.6.13. | Conventional metallic bipolar plate process |
5.6.14. | Advanced photochemical etching processes |
5.6.15. | Comparison of production methods |
5.7. | PEMEL gaskets & stack assembly components |
5.7.1. | PEMEL gasket functions & requirements |
5.7.2. | Gasket design considerations |
5.7.3. | Gasket material selection (1/2) |
5.7.4. | Gasket material selection (2/2) |
5.7.5. | O-ring & injection molded gaskets |
5.7.6. | WEVO-CHEMIE - liquid gaskets for electrolyzers |
5.7.7. | PEMEL cell frames |
5.7.8. | PEMEL end plates & stack assembly (1/2) |
5.7.9. | Stack assembly example - Plug Power |
5.8. | Advanced PEMEL designs |
5.8.1. | Hoeller Electrolyzer - next generation PEM stacks |
5.8.2. | Hystar - reducing PEMEL membrane thickness without impacting safety (1/2) |
5.8.3. | Hystar - reducing PEMEL membrane thickness without impacting safety (2/2) |
5.8.4. | H2U Technologies - PGM-free PEM electrolyzer |
5.8.5. | Fusion Fuel - miniaturized PEMEL |
5.9. | PEMEL stack, material & component suppliers |
5.9.1. | PEMEL materials & components supplier summary (1/2) |
5.9.2. | PEMEL materials & components supplier summary (2/2) |
5.9.3. | PEMEL stack suppliers |
5.9.4. | PEMEL component supply chain (1/2) |
5.9.5. | PEMEL component supply chain (2/2) |
5.9.6. | PEMEL membrane suppliers |
5.9.7. | PEMEL gasket / seal suppliers |
5.9.8. | PEMEL anode titanium PTLs |
5.9.9. | PEMEL cathode carbon GDLs |
5.9.10. | PEMEL bipolar plate manufacturers |
5.9.11. | PEMEL catalyst suppliers |
5.9.12. | PEMEL catalyst coated membrane (CCM) suppliers |
5.9.13. | PEMEL coating equipment / services suppliers |
6. | SOLID OXIDE ELECTROLYZERS (SOEC) MATERIALS & COMPONENTS |
6.1. | Overview |
6.1.1. | Solid oxide electrolyzer (SOEC) |
6.1.2. | US DOE technical targets for SOEC |
6.1.3. | SOEC materials & components summary |
6.1.4. | SOEC materials & components summary |
6.1.5. | Innovation priorities for SOEC materials & components |
6.1.6. | SOEC stack cost & potential in cost reduction |
6.2. | SOEC electrolytes |
6.2.1. | SOEC electrolyte functions & requirements |
6.2.2. | Yttria-stabilized zirconia (YSZ) electrolyte |
6.2.3. | YSZ electrolyte technical & commercial considerations |
6.2.4. | Alternative electrolyte materials |
6.2.5. | Impact of LT-SOFC electrolyte development |
6.2.6. | Comparison of electrolyte materials |
6.3. | SOEC catalysts & electrodes |
6.3.1. | Cathode: hydrogen evolution reaction (HER) |
6.3.2. | Ni cermet - the conventional material |
6.3.3. | Improving cathode materials |
6.3.4. | Anode: oxygen evolution reaction (OER) |
6.3.5. | LSM-YSZ - the conventional material |
6.3.6. | LSC & LSCF - new state-of-the-art materials (1/2) |
6.3.7. | LSC & LSCF - new state-of-the-art materials (2/2) |
6.3.8. | Alternative anode materials & innovations |
6.3.9. | SOEC component degradation challenges |
6.3.10. | Degradation mechanisms & mitigation strategies for SOECs & SOFCs |
6.4. | SOEC interconnects, coatings & contact layers |
6.4.1. | SOEC interconnect functions & requirements |
6.4.2. | Ceramic interconnects |
6.4.3. | Improving ceramic interconnects |
6.4.4. | Metallic interconnects |
6.4.5. | Protective coatings for metallic interconnects |
6.4.6. | fuelcellmaterials' coating for metallic interconnects |
6.4.7. | Contact layers for metallic interconnects |
6.4.8. | Contact layer commercial example |
6.5. | SOEC sealants & insulating materials |
6.5.1. | SOEC sealant functions & requirements |
6.5.2. | Compressive sealants |
6.5.3. | Flexitallic - Thermiculite sealing technology |
6.5.4. | Glass-ceramic sealants |
6.5.5. | Mo-Sci - viscous compliant sealants |
6.5.6. | SOEC insulation functions & requirements |
6.5.7. | SOEC insulating materials |
6.6. | SOEC cell manufacturing & stack assembly |
6.6.1. | Tubular vs planar SOEC & SOFC cells |
6.6.2. | Solid oxide cell configurations |
6.6.3. | Ceramic cell manufacturing process (1/2) |
6.6.4. | Ceramic cell manufacturing process (2/2) |
6.6.5. | Manufacturing process variations & new processes |
6.6.6. | Metal-supported cell features & manufacturing |
6.6.7. | Metallic component manufacturing, component integration & assembly |
6.6.8. | Elcogen - commercial SOEC cell example |
6.6.9. | Topsoe's SOEC cell development & outlook |
6.6.10. | Ceres Power - commercial SOFC example |
6.7. | SOEC stack, material & component suppliers |
6.7.1. | SOEC materials & components supplier summary |
6.7.2. | SOEC & SOFC stack suppliers |
6.7.3. | SOEC component supply chain |
6.7.4. | SOEC electrolyte & electrode material suppliers |
6.7.5. | SOEC sealing & insulating material suppliers |
6.7.6. | SOEC interconnect metals & coatings material suppliers |
7. | MARKET FORECASTS |
7.1. | Overview |
7.1.1. | Forecasting methodology |
7.1.2. | Forecasting assumptions (1/2) |
7.1.3. | Forecasting assumptions (2/2) |
7.1.4. | Annual electrolyzer demand by type (GW) |
7.1.5. | Breakdown of stack costs by electrolyzer type (US$/kW) |
7.1.6. | Total electrolyzer component market forecast (US$M) |
7.2. | Alkaline water electrolyzer (AWE) component forecasts |
7.2.1. | AWE raw materials demand forecast (ktpa) |
7.2.2. | AWE components demand forecast (ktpa) |
7.2.3. | AWE components demand forecast (million m2) |
7.2.4. | AWE components market forecast (US$M) |
7.3. | Proton exchange membrane electrolyzer (PEMEL) component forecasts |
7.3.1. | PEMEL catalyst loading forecast (g/kW or t/GW) |
7.3.2. | PEMEL titanium & coating loading forecast (g/kW) |
7.3.3. | PEMEL stainless steel & titanium demand forecast (tpa) |
7.3.4. | PEMEL precious metals demand forecast (tpa) |
7.3.5. | PEMEL components demand forecast (tpa) |
7.3.6. | PEMEL components demand forecast (1000's m2) |
7.3.7. | PEMEL components market forecast (US$M) |
7.4. | Solid oxide electrolyzer (SOEC) component forecasts |
7.4.1. | SOEC raw materials demand forecast (tpa) |
7.4.2. | SOEC metallic components demand forecast (tpa) |
7.4.3. | SOEC ceramic components demand forecast (tpa) |
7.4.4. | SOEC components demand forecast (1000's m2) |
7.4.5. | SOEC components market forecast (US$M) |
8. | ELECTROLYZER MATERIAL SUPPLY CHAIN DYNAMICS |
8.1. | Electrolyzer manufacturing influence |
8.1.1. | Manufacturing scale-up as a key lever for electrolyzer cost reductions |
8.1.2. | Electrolyzer manufacturing challenges overview |
8.1.3. | Simultaneous engineering in electrolyzer design |
8.2. | Platinum group metal (PGM) supply chain considerations |
8.2.1. | Critical minerals for the hydrogen economy |
8.2.2. | Green hydrogen's influence on minerals |
8.2.3. | Global critical mineral supply chains |
8.2.4. | Platinum & iridium supply chain considerations |
8.2.5. | Historical iridium price volatility |
8.2.6. | Historical iridium supply and demand |
8.2.7. | Will iridium supply limit the growth of PEMEL? |
8.2.8. | Importance of technological advancements & PGM recycling |
8.2.9. | Potential learnings from the LIB & EV industries |
8.2.10. | Clean energy applications competing for raw materials |