1. | EXECUTIVE SUMMARY |
1.1. | What is the report about and who should read it? |
1.2. | Status of OLED |
1.3. | Strategies of QDs in display |
1.4. | Characteristic comparison of different display technologies |
1.5. | Horizontal comparison |
1.6. | Why Micro-LED Displays? |
1.7. | Micro-LED value propositions compared with LCD, OLED, QD |
1.8. | Importance of identifying core value propositions |
1.9. | Core value propositions of µLED displays 1 |
1.10. | Core value propositions of µLED displays 2 |
1.11. | Core value propositions of µLED displays 3 |
1.12. | Core value propositions of µLED displays 4 |
1.13. | Core value propositions of µLED displays 5 |
1.14. | Analysis of micro-LED's value propositions |
1.15. | Influence of resolution for applications |
1.16. | Micro-LED display types |
1.17. | Potential applications for micro-LED displays |
1.18. | Matrix analysis |
1.19. | Display requirements for XR applications |
1.20. | Application analysis: Augmented/mixed reality |
1.21. | Application analysis: Virtual reality |
1.22. | Application analysis: Large video displays |
1.23. | Application analysis: Televisions and monitors |
1.24. | Application analysis: Automotive displays |
1.25. | Application analysis: Mobile phones |
1.26. | Application analysis: Smart watches and wearables |
1.27. | Application analysis: Tablets and laptop |
1.28. | Emerging displays enabled by micro-LED technology |
1.29. | Summary: Micro-LED displays for XR |
1.30. | Application focus for micro-LED displays |
1.31. | Emerging functional displays based on micro-LEDs |
1.32. | Trend: Equipment solution provider status |
1.33. | Micro-LED display development stage |
1.34. | Micro-LED application roadmap |
1.35. | Micro-LED display fabrication flowchart 1 |
1.36. | Micro-LED display fabrication flowchart 2 |
1.37. | Technologies of micro-LED displays |
1.38. | Complex micro-LED display design |
1.39. | Challenge transition for micro-display manufacturing |
1.40. | Current achievements of micro-LED displays |
1.41. | Summary of challenges for micro-LED displays |
1.42. | Issues with RGB micro-LED chips |
1.43. | Micro-LED performance summary |
1.44. | Full colour realization |
1.45. | Quantum dots for µLEDs |
1.46. | Common color assembly choice comparison |
1.47. | Trend: Package preference for direct-view large displays |
1.48. | Regional players: Taiwan |
1.49. | Regional players: Mainland China |
1.50. | Regional players: Japan & Korea |
1.51. | Regional players: Europe |
1.52. | Regional players: North America |
1.53. | Supply chain status |
1.54. | Supply chain reshuffle |
1.55. | Possible supply chain for micro-LED displays |
1.56. | Scenarios of supply chain dominance |
1.57. | Supply chain influenced by trade war and COVID-19 |
2. | COST ANALYSIS |
2.1. | Cost basics |
2.2. | Micro-LED cost vs Die size |
2.3. | Cost assumption |
2.4. | Cost analysis |
2.5. | Economics of micro-LED: Cost reduction paths |
3. | MARKET ANALYSIS |
3.1. | Forecast approaches and assumptions |
3.2. | Market forecast of device unit |
3.3. | Market forecast of market value |
3.4. | 2029 & 2034 application market value share |
3.5. | Market forecast analysis |
3.6. | Wafer value forecast |
4. | INTRODUCTION TO MICRO-LED DISPLAY |
4.1. | Expectation of future displays |
4.2. | From traditional LEDs... |
4.3. | ...to Micro-LEDs |
4.4. | Comparisons of LEDs for displays |
4.5. | Mini-LEDs and Micro-LEDs |
4.6. | Sony: Micro-LEDs |
4.7. | Correlations between mini-LED, micro-LED and fine pitch LED displays |
4.8. | From traditional LEDs to micro-LED |
4.9. | Display types based on micro-LEDs |
4.10. | Existing large mini-/micro-LED display announcements |
4.11. | Advantages of AM micro-LED micro-displays |
4.12. | LED size definitions |
4.13. | Micro-LED displays: Size is an important feature |
4.14. | Micro LED displays: Beyond the size |
4.15. | A better definition? |
4.16. | Micro-LED display panel structure |
5. | EPITAXY AND CHIP MANUFACTURING |
5.1. | Introduction to light-emitting diodes |
5.1.1. | History of solid-state lighting |
5.1.2. | What is an LED? |
5.1.3. | How does an LED work? |
5.1.4. | Homojunction vs heterojunction |
5.1.5. | LEDs by package technique 1 |
5.1.6. | LEDs by package technique 2 |
5.1.7. | Typical LED and packaged LED sizes |
5.1.8. | Comparison between SMD and COB |
5.1.9. | COB for displays |
5.1.10. | List of global major LED companies with introduction |
5.2. | Epitaxy |
5.2.1. | Bandgap vs lattice constant for III-V semiconductors |
5.2.2. | Materials for commercial LED chips 1 |
5.2.3. | Materials for commercial LED chips 2 |
5.2.4. | Green gap |
5.2.5. | Epitaxy substrate |
5.2.6. | Wafer patterning 1 |
5.2.7. | Wafer patterning 2 |
5.2.8. | Wafer patterning 3 |
5.2.9. | Epitaxy methods |
5.2.10. | Metal organic chemical vapor deposition |
5.2.11. | Pros and cons of MOCVD |
5.2.12. | Epitaxial growth requirement |
5.2.13. | Offering from Aixtron and Veeco |
5.2.14. | Veeco's offering |
5.2.15. | Engineered substrate |
5.2.16. | Wafer uniformity 1 |
5.2.17. | Wavelength uniformity 2 |
5.2.18. | Solutions for wafer nonuniformity |
5.3. | Chip manufacturing |
5.3.1. | LED fabrication flowchart |
5.3.2. | Typical RGB LED designs |
5.3.3. | LED chip structures 1 |
5.3.4. | LED chip structures 2 |
5.3.5. | LED chip structure illustrations |
5.3.6. | Future of the LED chip structure |
5.3.7. | Epi-film transfer |
5.3.8. | Fabrication of vertical GaN-LEDs |
5.4. | Micro-LED Performances |
5.4.1. | Influence of micro-LED performance |
5.4.2. | EQE of micro-LED versus current density 1 |
5.4.3. | EQE of micro-LED versus current density 2 |
5.4.4. | Efficiency droop |
5.4.5. | Temperature stability |
5.4.6. | Bowing of wavelength shift |
5.4.7. | Size dependence of micro-LEDs: Efficiency |
5.4.8. | Size dependence of micro-LEDs: Current spreading |
5.4.9. | Size dependence of micro-LEDs: Strain relaxation |
5.4.10. | Surface recombination |
5.4.11. | Sidewall effect |
5.4.12. | Conclusion of micro-LED size dependency |
5.4.13. | Side wall passivation |
5.4.14. | Efficiencies and requirement of RGB micro-LEDs |
5.4.15. | Color-dependent light emission pattern |
5.4.16. | Efficiency improvement |
5.4.17. | Mikro Mesa: Current injection |
5.4.18. | Mikro Mesa's micro-LEDs |
6. | TRANSFER, ASSEMBLY AND INTEGRATION |
6.1.1. | Transfer, assembly and integration technology types |
6.1.2. | Introduction |
6.1.3. | Mass transfer, assembly and integration technologies |
6.1.4. | Requirements of mass transfer |
6.1.5. | Chiplet mass transfer types |
6.2. | Chiplet Mass Transfer |
6.2.1. | Introduction to chiplet mass assembly |
6.2.2. | Chiplet mass transfer scenario 1 |
6.2.3. | Chiplet mass transfer scenario 2 |
6.2.4. | Comparison of mass transfer technologies |
6.2.5. | Comparison of transfer technologies of different companies |
6.2.6. | Transfer yield |
6.3. | Fine pick and place |
6.3.1. | Overview of Elastomeric stamp |
6.3.2. | Transfer process flow |
6.3.3. | Elastomeric stamp: Pros and cons |
6.3.4. | Key technologies for micro-LED mass transfer |
6.3.5. | Substrate treatment |
6.3.6. | Kinetic control of the elastomeric stamp adhesion |
6.3.7. | Elastomeric stamp |
6.3.8. | Pitch size determination |
6.3.9. | X-Celeprint |
6.3.10. | µLED fabrication |
6.3.11. | µLEDs from sapphire substrate |
6.3.12. | Passive matrix displays made by micro-transfer printing |
6.3.13. | Passive matrix μLED display fabrication 1 |
6.3.14. | Passive matrix μLED display fabrication 2 |
6.3.15. | Active matrix displays made by micro-transfer printing |
6.3.16. | Active matrix μLED display fabrication |
6.3.17. | Automated micro-transfer printing machinery |
6.3.18. | Capillary-assisted transfer printing |
6.3.19. | Mikro Mesa: Transfer technology |
6.3.20. | Mikro Mesa: Transfer flowchart 1 |
6.3.21. | Mikro Mesa: Transfer flowchart 2 |
6.3.22. | Mikro Mesa: Transfer stamp |
6.3.23. | Mikro Mesa: Transfer design target |
6.3.24. | PlayNitride: Mass transfer for micro-LED chips |
6.3.25. | PlayNitride: Mass transfer flowchart 1 |
6.3.26. | PlayNitride: Mass transfer flowchart 2 |
6.3.27. | Visionox 1 |
6.3.28. | Visionox 2 |
6.3.29. | ITRI: Chip fabrication |
6.3.30. | ITRI's mass transfer process |
6.3.31. | ITRI's transfer module |
6.3.32. | Overview of electrostatic array |
6.3.33. | Electrostatic/electromagnetic transfer |
6.3.34. | Apple/LuxVue 1 |
6.3.35. | Apple/LuxVue 2 |
6.3.36. | VerLASE's large area assembly platform |
6.3.37. | Interposer idea |
6.4. | Self-assembly |
6.4.1. | Introduction of fluidic-assembly |
6.4.2. | eLux: introduction |
6.4.3. | Fabrication of micro-LED chip array |
6.4.4. | eLux's fluidic assembly |
6.4.5. | eLux's display prototypes |
6.4.6. | eLux's supply chain |
6.4.7. | eLux's core patent technology 1 |
6.4.8. | eLux's core patent technology 2 |
6.4.9. | eLux's core patent technology 3 |
6.4.10. | eLux's core patent technology 4 |
6.4.11. | eLux's core patent technology 5 |
6.4.12. | eLux's core patent technology 6 |
6.4.13. | Image quality comparison |
6.4.14. | SWOT analysis of eLux's technology |
6.4.15. | Other fluidic assembly techniques |
6.4.16. | Fluidic assembly (physical): overview |
6.4.17. | Alien |
6.4.18. | Alien's fluidic self-assembly technology |
6.4.19. | Self-assembly based on shape/geometry matching |
6.4.20. | Shape-based self-assembly |
6.4.21. | Fluidic assembly (electrophoretic): Overview |
6.4.22. | Electrophoretic positioning of LEDs |
6.4.23. | PARC's xerographic micro-assembly Printing 1 |
6.4.24. | PARC's xerographic micro-assembly Printing 2 |
6.4.25. | Fluidic-assembly (surface energy): Overview |
6.4.26. | LG's FSA transfer technique |
6.4.27. | Mechanism of surface-tension-driven fluidic assembly |
6.4.28. | Surface tension based fluidic assembly 1 |
6.4.29. | Surface tension based fluidic assembly 2 |
6.4.30. | Surface tension based fluidic assembly 3 |
6.4.31. | Surface tension based fluidic assembly 4 |
6.4.32. | Fluidic-assembly (magnetic): Overview |
6.4.33. | Magnetically-assisted assembly |
6.4.34. | Fluidic-assembly (photoelectrochemical): Overview |
6.4.35. | Photoelectrochemically driven fluidic-assembly |
6.4.36. | Fluidic-assembly (combination): Overview |
6.4.37. | Chip mounting apparatus |
6.4.38. | Summary of fluidic assembly |
6.4.39. | SelfArray |
6.5. | Laser enabled transfer |
6.5.1. | Overview of laser enabled transfer |
6.5.2. | Laser beam requirement |
6.5.3. | Coherent UVtransfer 3in1 System |
6.5.4. | Uniqarta's parallel laser-enabled transfer technology 1 |
6.5.5. | Uniqarta's parallel laser-enabled transfer technology 2 |
6.5.6. | Uniqarta's parallel laser-enabled transfer technology 3 |
6.5.7. | Uniqarta's parallel laser-enabled transfer technology 4 |
6.5.8. | Uniqarta's parallel laser-enabled transfer technology 5 |
6.5.9. | QMAT's beam-addressed release technology |
6.5.10. | Optovate's technology 1 |
6.5.11. | Optovate's technology 2 |
6.5.12. | Coherent's approach |
6.5.13. | Toray's offering |
6.5.14. | Visionox's achievement |
6.5.15. | Selective transfer by selective bonding-debonding |
6.6. | Other chiplet mass transfer techniques |
6.6.1. | Korean Institute of Machinery and Materials (KIMM) 1 |
6.6.2. | Korean Institute of Machinery and Materials (KIMM) 2 |
6.6.3. | Continuous roller transfer-printing of >75,000 die transfer in a single shot |
6.6.4. | VueReal's cartridge printing technique |
6.6.5. | VueReal's micro printer |
6.6.6. | Innovasonic's technology |
6.6.7. | Rohinni's Technology |
6.6.8. | Two-step micro-transfer technology 1 |
6.6.9. | Two-step micro-transfer technology 2 |
6.6.10. | Two-step micro-transfer technology 3 |
6.6.11. | Two-step micro-transfer technology 4 |
6.6.12. | Micro-transfer using a stretchable film |
6.6.13. | Micro-pick-and-place |
6.6.14. | Photo-polymer mass transfer |
6.7. | All-In-One Transfer |
6.7.1. | All-in-one CMOS driving |
6.7.2. | Pros and cons of all-in-one CMOS driving technique |
6.8. | Heterogeneous Wafers |
6.8.1. | Array integration |
6.8.2. | Hybridization |
6.8.3. | Wafer bonding process |
6.8.4. | Hybridization integration structure |
6.8.5. | Process flow of Silicon Display of Sharp |
6.8.6. | Monolithic micro-LED array |
6.8.7. | JBD's integration technology |
6.8.8. | Device fabrication 1 |
6.8.9. | Device fabrication 2 |
6.8.10. | Device structure and architecture |
6.8.11. | micro-LEDs for the JBD's micro-displays |
6.8.12. | Process of fabricating monolithic micro-displays |
6.8.13. | Novel approach for monolithic display fabrication |
6.8.14. | Pros and cons of heterogeneous wafers |
6.8.15. | Players on heterogeneous wafers |
6.9. | Monolithic Integration |
6.9.1. | Introduction to monolithic integration |
6.9.2. | Lumiode approach |
6.9.3. | Lumiode: Introduction |
6.9.4. | Lumiode approach, process details |
6.9.5. | Lumiode's micro-LED performance |
6.9.6. | Lumiode's device performance |
6.9.7. | Temperature performance for the crystallization |
6.9.8. | Wafer from Lumiode |
6.9.9. | Ostendo's approach |
6.9.10. | Ostendo's QPI structure |
6.9.11. | Introduction of EpiPix |
6.9.12. | EpiPix's technique |
6.10. | GaN on Silicon |
6.10.1. | GaN-on-Si for various application markets |
6.10.2. | GaN on silicon epi types |
6.10.3. | Challenges of GaN-on-Silicon epitaxy |
6.10.4. | Value propositions of GaN-on-Si 1 |
6.10.5. | Value propositions of GaN-on-Si 2 |
6.10.6. | GaN on sapphire vs on silicon |
6.10.7. | GaN-on-Si approach |
6.10.8. | Cost comparison: Sapphire vs silicon |
6.10.9. | Is GaN-on-Si the ultimate option? |
6.10.10. | Players working on GaN micro-LEDs on silicon |
6.10.11. | LED manufacturing |
6.10.12. | Pixel development |
6.10.13. | RGB GaN on silicon |
6.11. | Nanowires |
6.11.1. | Comparison between 2D and 3D micro-LEDs |
6.11.2. | GaN epitaxy on silicon substrate |
6.11.3. | Aledia process flow |
6.11.4. | Aledia's nanowire technology |
6.11.5. | Front size device technology |
6.11.6. | Nanowires growth on silicon substrate |
6.11.7. | Size influence on nanowire's efficiency |
6.11.8. | Native EL RGB nanowires |
6.11.9. | 3D technology for small-display applications |
6.11.10. | Micro-display enabled by nanowires and 3D integration |
6.11.11. | Future of nanowire approach |
6.12. | Bonding and interconnection |
6.12.1. | Classification |
6.12.2. | Summary |
6.12.3. | Wire bonding and flip chip bonding |
6.12.4. | ACF bonding |
6.12.5. | Interconnection by resin reflow |
6.12.6. | Microtube interconnections |
6.12.7. | Microtube fabrication |
6.12.8. | Transfer and interconnection process by microtubes |
6.12.9. | Interconnection options |
7. | TESTING |
7.1. | Challenges in inspection |
7.2. | Testing techniques |
7.3. | PL vs EL testing |
7.4. | EL test by Tesoro Scientific 1 |
7.5. | EL test by Tesoro Scientific 2 |
7.6. | Camera-based microscopic imaging system |
7.7. | Inspection solution by Toray 1 |
7.8. | Inspection solution by Toray 2 |
7.9. | Instrument System's solution |
7.10. | PL+AOI |
7.11. | TTPCON's solution |
7.12. | Cathodoluminescence used for testing |
7.13. | Hamamatsu Photonics' PL testing |
7.14. | Trends of testing |
7.15. | Inspection tool suppliers |
8. | DEFECT MANAGEMENT |
8.1. | Introduction |
8.2. | Defect types |
8.3. | Redundancy |
8.4. | Repair 1 |
8.5. | Repair 2 |
8.6. | Laser micro trimming 1 |
8.7. | Laser micro trimming 2 |
8.8. | PlayNitride's SMAR Tech |
8.9. | Defect compensation by QDs |
9. | MICRO-LED DISPLAY FULL-COLOUR REALIZATION |
9.1.1. | Strategies for full colour realization |
9.1.2. | Direct RGB or color converters? |
9.1.3. | RGB micro-LEDs vs blue micro-LED + QD 1 |
9.1.4. | RGB micro-LEDs vs blue micro-LED + QD 2 |
9.1.5. | UV LED approach |
9.1.6. | Micro Nitride's technology |
9.2. | Colour filters |
9.2.1. | Colour filters |
9.2.2. | Colour filter process flow: Black matrix process |
9.2.3. | Colour filter process flow: RGB process 1 |
9.2.4. | Colour filter process flow: RGB process 2 |
9.3. | Stacked RGB MicroLEDs |
9.3.1. | Introduction to stacked RGB microLEDs |
9.3.2. | MIT's solution |
9.3.3. | Seoul Viosys' contribution |
9.3.4. | Lumens |
9.3.5. | Innovision's efforts |
9.3.6. | Sundiode |
9.3.7. | Tsinghua University's research |
9.3.8. | Youngwoo DSP |
9.3.9. | KAIST |
9.3.10. | Rayleigh Vision's innovation |
9.4. | Three panel system |
9.4.1. | Full colour realized by optical lens synthesis |
9.4.2. | Full colour realization for projectors |
9.5. | Do phosphors work for micro-LED displays? |
9.5.1. | Introduction to phosphors 1 |
9.5.2. | Introduction to phosphors 2 |
9.5.3. | Requirements for phosphors in LEDs |
9.5.4. | Table of phosphor materials |
9.5.5. | Common and emerging red-emitting phosphors |
9.5.6. | Search for narrow FWHM red phosphors |
9.5.7. | Red phosphor options: TriGainTM from GE |
9.5.8. | Reliability of TriGain |
9.5.9. | Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor |
9.5.10. | Commercial progress of GE's narrowband red phosphor |
9.5.11. | Small sized PFS phosphor |
9.5.12. | Value propositions of red KSF |
9.5.13. | Evolution of KSF phosphors |
9.5.14. | GE alternative red phosphors in development |
9.5.15. | Thermal stability of common RGY phosphors |
9.5.16. | Narrow-band green phosphor |
9.5.17. | High performance organic phosphors |
9.5.18. | Toray's organic colour conversion film |
9.5.19. | Colour coverage of Toray's colour conversion films |
9.5.20. | Stability of Toray's colour conversion films |
9.5.21. | Response time feature of Toray's colour conversion films |
9.5.22. | Suppliers of phosphors |
9.6. | Quantum dot approach |
9.6.1. | Introduction to quantum dots |
9.6.2. | Quantum dot structure |
9.6.3. | Value propositions of QDs in displays |
9.6.4. | QD-based display types |
9.6.5. | Photoluminescence of quantum dots |
9.6.6. | Replacing phosphors with quantum dots |
9.6.7. | Phosphors and quantum dots |
9.6.8. | QDs vs phosphors: Particle size |
9.6.9. | QDs vs phosphors: Response time |
9.6.10. | QDs vs phosphors: Colour tunability |
9.6.11. | QDs vs phosphors: Stability |
9.6.12. | QDs vs phosphors: Absorption |
9.6.13. | QDs vs phosphors: FWHM |
9.6.14. | Summary: QDs vs phosphors |
9.6.15. | Phosphor and QD in harmony |
9.6.16. | Quantum dots used for micro-LED displays |
9.6.17. | Using quantum dots as colour filter |
9.6.18. | Basic requirements of QDs for micro-LED displays |
9.6.19. | Disadvantages and challenges of QD color filters |
9.6.20. | Trade-off between efficiency and leakage |
9.6.21. | Efficiency drop and red shift |
9.6.22. | Thickness of the QD layer for absorption |
9.6.23. | Emission tails overlap |
9.6.24. | High blue absorptive QD materials |
9.6.25. | Display structure with QDs |
9.6.26. | QD display pixel patterning techniques |
9.6.27. | QD converters for µLED displays |
9.6.28. | Ink-jet printed QD colour converters |
9.6.29. | Pros and cons of ink-jet printing |
9.6.30. | Photoresist approach |
9.6.31. | Pros and cons of photolithography |
9.6.32. | Full-colour emission of quantum-dot-based micro-LED display by aerosol jet technology |
9.6.33. | Samsung's QNED |
9.6.34. | Full colour realization by Sharp |
9.6.35. | NPQD technology from Saphlux 1 |
9.6.36. | NPQD technology from Saphlux 2 |
9.7. | Quantum well approach |
9.7.1. | Quantum wells |
9.7.2. | Conclusions |
10. | LIGHT MANAGEMENT |
10.1. | Light management approach summary |
10.2. | Layers to optimize current distribution for better light extraction |
10.3. | InfiniLED's approach to increase light extraction efficiency 1 |
10.4. | InfiniLED's approach to increase light extraction efficiency 2 |
10.5. | Apple's approach |
10.6. | Methods to capture light output |
10.7. | Micro-catadioptric optical array for better directionality |
10.8. | AM micro-LED with directional emission |
11. | BACKPLANES AND DRIVING |
11.1. | Backplane and driving options for Micro-LED displays |
11.2. | Introduction to metal oxide semiconductor field-effect transistors |
11.3. | Introduction to thin film transistors |
11.4. | Introduction to complementary metal oxide semiconductor |
11.5. | Introduction to backplane |
11.6. | TFT materials |
11.7. | Pixel driving for OLED |
11.8. | LCD pixel structure |
11.9. | TFT backplane |
11.10. | Passive matrix addressing |
11.11. | Passive driving structure |
11.12. | Active matrix addressing |
11.13. | Comparison between PM and AM addressing |
11.14. | Transistor-micro-LED connection design |
11.15. | Driving for micro-LEDs |
11.16. | Pulse width modulation |
11.17. | PAM vs PWM |
11.18. | Driving voltage |
11.19. | Driving vs. EQE |
11.20. | RGB driver |
11.21. | Active matrix micro-LEDs with LTPS TFT backplane |
11.22. | Sony: Active matrix driving with micro IC |
11.23. | Conclusion |
12. | IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS |
12.1. | Image Quality Improvement |
12.1.1. | TFT-based image uniformity issues |
12.1.2. | LED binning |
12.1.3. | Drive design |
12.1.4. | Optical compensation |
12.1.5. | Drive compensation |
12.1.6. | AUO's LTPS TFT driven micro-LED display 1 |
12.1.7. | AUO's LTPS TFT driven micro-LED display 2 |
12.2. | Power Consumption Reduction |
12.2.1. | LED and TFT |
12.2.2. | Drive mode optimization |
12.2.3. | Backplane optimization |
13. | MINI-LED DISPLAYS |
13.1. | Mini-LED display configurations |
13.2. | What kind of role is mini-LED playing? |
13.3. | MiniLEDs, real hope for 2024 onward? |
13.4. | Trends of Mini-LED displays |
14. | PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE |
14.1. | Display cycle |
14.2. | Benefits |
14.3. | Meta & InfiniLED & Plessey |
14.4. | Google & Raxium & Jasper Display |
14.5. | Epistar & Leyard |
14.6. | PlayNitride & RIT Display |
14.7. | Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics |
14.8. | BOE & Rohinni |
14.9. | Lextar & X Display |
14.10. | JDI & glō, Kyocera & glō |
14.11. | Seoul Semiconductors & Viosys |
14.12. | Kulicke & Soffa and Uniqarta |
14.13. | Snap & Compound Photonics |