1. | EXECUTIVE SUMMARY |
1.1. | VR, AR, MR and XR as experiences |
1.2. | Segmenting devices: VR vs. AR |
1.3. | Display and optics systems in VR and AR |
1.4. | Classifying headsets |
1.5. | The metaverse as a driver for XR development |
1.6. | XR devices and the metaverse |
1.7. | Apple's Vision Pro and re-evaluation of XR |
1.8. | The rise of passthrough MR in VR headsets |
1.9. | The outlook for XR: comparing the VR and AR markets |
1.10. | Display panel technologies in VR |
1.11. | Display panel technologies in AR |
1.12. | Benchmarking criteria (I): commercial factors |
1.13. | Benchmarking criteria (II): technological factors |
1.14. | Liquid crystal displays (LCDs): overview |
1.15. | Major VR LCD ecosystem players |
1.16. | Outlook for LCDs |
1.17. | OLED (organic light emitting diode) displays: overview |
1.18. | OLED-on-silicon/micro-OLED displays: overview |
1.19. | OLEDoS vs. OLED on TFT |
1.20. | OLED for VR: what might the new ecosystem look like? |
1.21. | The OLEDoS ecosystem: Sony holds a powerful position |
1.22. | Outlook for OLED(-on-TFT) displays |
1.23. | Outlook for OLEDoS displays |
1.24. | Micro-light emitting diode (micro-LED) displays: overview |
1.25. | Possible supply chain for micro-LED displays |
1.26. | Summary: micro-LED displays |
1.27. | Liquid crystal on silicon (LCoS) displays: overview |
1.28. | Digital micromirror device (DMD)/digital light processing (DLP) displays: overview |
1.29. | Supply chains in LCoS for AR |
1.30. | The DLP/DMD ecosystem in AR |
1.31. | DLP vs. LCoS: why has DLP lost ground? |
1.32. | Outlook for LCoS displays |
1.33. | Outlook for DLP displays |
1.34. | Laser beam scanning (LBS): overview |
1.35. | The LBS ecosystem |
1.36. | Outlook for LBS displays |
1.37. | Unweighted comparison of all display types |
1.38. | VR displays: benchmark performance |
1.39. | Summary: Displays for VR |
1.40. | Narrow FoV AR displays: benchmark performance (plots) |
1.41. | Wide FoV AR displays: benchmark performance (plots) |
1.42. | Summary: displays for AR |
1.43. | Forecasts in this report |
1.44. | VR headsets: revenue |
1.45. | VR headsets: headset volume |
1.46. | VR displays: adoption proportions |
1.47. | VR displays: volume/no. displays |
1.48. | VR displays: revenue |
1.49. | AR headsets: revenue |
1.50. | AR headsets: headset volume |
1.51. | Narrow FoV AR displays: adoption proportions |
1.52. | Narrow FoV AR displays: volume/no. displays |
1.53. | Narrow FoV AR displays: revenue |
1.54. | Wide FoV AR displays: adoption proportions |
1.55. | Wide FoV AR displays: volume/no. displays |
1.56. | Wide FoV AR displays: revenue |
1.57. | Displays for VR: analyst outlook (I) |
1.58. | Displays for VR: analyst outlook (II) |
1.59. | Displays for AR: analyst outlook (I) |
1.60. | Displays for AR: analyst outlook (II) |
2. | INTRODUCTION |
2.1. | Introduction to extended reality (XR) |
2.1.1. | VR, AR, MR and XR as experiences |
2.1.2. | Segmenting devices: VR vs. AR |
2.1.3. | Classifying headsets |
2.1.4. | AR, MR, VR and XR: a brief history |
2.1.5. | The 2010s to date - the age of XR begins |
2.1.6. | Applications in VR, AR & MR |
2.1.7. | The metaverse as a driver for XR development |
2.1.8. | XR devices and the metaverse |
2.1.9. | Industry 4.0 and XR |
2.1.10. | VR/AR solutions for Industry 4.0 |
2.1.11. | Apple's Vision Pro and re-evaluation of XR |
2.1.12. | The rise of passthrough MR in VR headsets |
2.1.13. | Old terminology: PC-, standalone and smartphone XR |
2.1.14. | Updating terminology: standalone vs. tethered |
2.1.15. | AR: Defining terminology (I) |
2.1.16. | AR: Defining terminology (II) |
2.1.17. | Consumer AR headsets: a rocky history |
2.1.18. | Consumer AR devices face tough competition |
2.1.19. | AR headsets as a replacement for other smart devices |
2.1.20. | AR as the end goal |
2.1.21. | AR, MR and VR - market development |
2.1.22. | VR headsets: selected players |
2.1.23. | AR headsets: selected players |
2.1.24. | Potential Big Tech entries to the AR market (I) |
2.1.25. | Potential Big Tech entries to the AR market (II) |
2.1.26. | The outlook for XR: comparing the VR and AR markets |
2.2. | Introduction to VR displays |
2.2.1. | VR display and optics requirements |
2.2.2. | Display panel technologies in VR |
2.2.3. | Comparing VR display types |
2.2.4. | Choices of VR optic |
2.2.5. | "Reverse passthrough": a new display type for VR |
2.2.6. | Benchmarking performance of VR displays |
2.2.7. | Major display suppliers |
2.2.8. | Summary: displays for VR |
2.3. | Introduction to AR displays |
2.3.1. | AR optics and display requirements |
2.3.2. | Display panel technologies in AR |
2.3.3. | Optical combiners: definition and classification |
2.3.4. | Optical combiners for AR |
2.3.5. | Common waveguide architectures |
2.3.6. | Common waveguide architectures: operating principle and device examples |
2.3.7. | Reflective (geometric) waveguides |
2.3.8. | Reflective waveguides: SWOT analysis |
2.3.9. | Surface relief grating waveguides |
2.3.10. | Diffractive waveguides (SRG): SWOT analysis |
2.3.11. | Volume holographic grating waveguides |
2.3.12. | Diffractive waveguides (VHG): SWOT analysis |
2.3.13. | Birdbath optics: current top choice for lower-end AR |
2.3.14. | Birdbath combiners: SWOT analysis |
2.3.15. | Status and market potential of optical combiners |
2.3.16. | Optical engines: combining displays and optics in XR |
2.3.17. | Narrow FoV AR displays: benchmark performance |
2.3.18. | Wide FoV AR displays: benchmark performance (discussion) |
2.3.19. | Conclusion: the future of AR displays |
2.4. | Fundamental display metrics |
2.4.1. | Purpose of this section |
2.4.2. | Field of view defines XR experiences |
2.4.3. | Eyebox and eye relief: keys to XR usability |
2.4.4. | No free lunches: etendue, FoV and eyebox |
2.4.5. | Measuring brightness and efficiency |
2.4.6. | Resolution, FoV and pixel density |
2.4.7. | Foveated rendering and displays: higher display quality at reduced resolution for both VR and AR |
2.4.8. | Color gamuts: how colorful is my image? |
2.4.9. | Contrast and dynamic range: the same but different |
2.4.10. | The screen door effect, Mura effect and aliasing - ugly display artefacts |
2.4.11. | How do display requirements differ between AR and VR? |
3. | MARKET FORECASTS |
3.1.1. | Forecasts in this report |
3.2. | Forecasting methodology |
3.2.1. | VR headset forecasting: important data sources |
3.2.2. | AR headset forecasting: important data sources |
3.2.3. | Methodology - device and display forecasts |
3.2.4. | AR and VR headsets: state of the market |
3.3. | Forecasts: VR headsets and displays |
3.3.1. | VR: historic device sales |
3.3.2. | Cyclic nature of VR hardware sales |
3.3.3. | VR headsets: revenue |
3.3.4. | VR headsets: headset volume |
3.3.5. | VR displays: adoption proportions |
3.3.6. | VR displays: volume/no. displays |
3.3.7. | VR displays: revenue |
3.3.8. | Conclusion: the future of VR displays |
3.4. | Forecasts: AR headsets and displays |
3.4.1. | AR: historic device sales |
3.4.2. | What is not considered in forecasting |
3.4.3. | AR headsets: revenue |
3.4.4. | AR headsets: headset volume |
3.4.5. | Narrow FoV AR displays: adoption proportions |
3.4.6. | Narrow FoV AR displays: volume/no. displays |
3.4.7. | Narrow FoV AR displays: revenue |
3.4.8. | Wide FoV AR displays: adoption proportions |
3.4.9. | Wide FoV AR displays: volume/no. displays |
3.4.10. | Wide FoV AR displays: revenue |
3.4.11. | Conclusion: the future of AR displays |
4. | DISPLAY PANEL TECHNOLOGIES |
4.1. | Liquid crystal displays (LCDs) |
4.1.1. | Liquid crystal displays (LCDs): overview |
4.1.2. | LCDs in VR: example device |
4.1.3. | LCD in AR: example devices |
4.1.4. | LCDs: introduction |
4.1.5. | Illuminating LCD panels |
4.1.6. | Global backlighting vs. mini-LED backlighting (local dimming) |
4.1.7. | How are mini-LED backlights assembled? |
4.1.8. | Laser backlighting in LCDs |
4.1.9. | Field sequential color in LCDs: resolution expansion via the backlight |
4.1.10. | JDI case study (I): reducing motion blur and ghosting in LCDs by strobing the backlight |
4.1.11. | JDI case study (II): decreasing the response time of LCDs |
4.1.12. | Major VR LCD ecosystem players |
4.1.13. | What's next for LCDs in VR? |
4.1.14. | Summary: LCDs |
4.2. | OLED (organic light emitting diode) displays |
4.2.1. | OLED (organic light emitting diode) displays: overview |
4.2.2. | OLED displays in VR: example devices |
4.2.3. | OLED displays: introduction |
4.2.4. | OLED vs LCD: direct emission vs transmission |
4.2.5. | How do OLEDs work? |
4.2.6. | Motivations for OLED material development advancement |
4.2.7. | Room at the top: strategies to widen display color gamuts |
4.2.8. | Readiness level of OLED emissive materials |
4.2.9. | RGB vs white OLED |
4.2.10. | Why did OLED use decline in VR? |
4.2.11. | Why does the PS VR2 use OLED displays? |
4.2.12. | What limits OLED pixel density? |
4.2.13. | Case study: increasing OLED pixel density via photolithography |
4.2.14. | Why has photolithographic patterning of OLEDs been a difficult problem to solve? |
4.2.15. | Case study: JDI's eLEAP process |
4.2.16. | Flexible/curved OLED displays in VR |
4.2.17. | OLED for VR: what might the new ecosystem look like? |
4.2.18. | Summary: OLED displays |
4.3. | OLED-on-silicon/micro-OLED displays |
4.3.1. | OLED-on-silicon/micro-OLED displays: overview |
4.3.2. | OLEDoS displays in AR: example devices |
4.3.3. | OLEDoS displays in VR: example devices |
4.3.4. | OLEDoS displays: introduction |
4.3.5. | OLEDoS vs. OLED on TFT |
4.3.6. | OLEDoS displays are well-proven for near-eye display use |
4.3.7. | Why is W-OLED dominant in OLEDoS displays? |
4.3.8. | Case study: eMagin, Samsung Display and OLEDoS patterning |
4.3.9. | Case study: OLEDoS as an enabler for low-profile AR (I) |
4.3.10. | Case study: OLEDoS as an enabler for low-profile AR (II) |
4.3.11. | OLEDoS with birdbath combiners: a popular choice for AR |
4.3.12. | Microdisplays in VR: does eyebox pose a problem? |
4.3.13. | The OLEDoS ecosystem: Sony holds a powerful position |
4.3.14. | Summary: OLEDoS displays |
4.4. | Micro-light emitting diode (micro-LED) displays |
4.4.1. | Micro-light emitting diode (micro-LED) displays: overview |
4.4.2. | Micro-LED displays in AR: example devices |
4.4.3. | Micro-LED displays: introduction |
4.4.4. | Manufacturing methods |
4.4.5. | Mass transfer methods for micro-LED |
4.4.6. | Mass transfer and assembly technologies |
4.4.7. | Manufacturing methods for XR displays |
4.4.8. | Color assembly choices |
4.4.9. | Case study: Jade Bird Display and the commercial launch of micro-LED in AR |
4.4.10. | Optical lens synthesis/RGB die-by-die color assembly in AR: a stopgap solution? |
4.4.11. | Common color assembly choice comparison |
4.4.12. | Basic requirements of QDs for micro-LED displays |
4.4.13. | Material choices for micro-LED chips |
4.4.14. | Possible supply chain for micro-LED displays |
4.4.15. | Case study: Plessey, Meta and Big Tech interest in micro-LED microdisplays |
4.4.16. | Case study: AR contact lenses powered by microLEDs |
4.4.17. | Summary: micro-LED displays |
4.5. | Liquid crystal on silicon (LCoS) displays |
4.5.1. | Liquid crystal on silicon (LCoS) displays: overview |
4.5.2. | LCoS displays in AR: example devices |
4.5.3. | LCoS displays: introduction |
4.5.4. | LCoS micro-display architecture |
4.5.5. | How LCoS displays operate |
4.5.6. | Liquid crystal material choice affects how panels perform |
4.5.7. | LCoS performance requirements |
4.5.8. | Working principle of simple LCoS-based AR headsets |
4.5.9. | Case study: Google Glass EE LCoS illumination setup |
4.5.10. | Illuminating LCoS chips and combining color |
4.5.11. | AKONIA: indicating possible approaches to AR for Apple |
4.5.12. | Case study: the Magic Leap 2 and the unique advantages of LCoS |
4.5.13. | Case study: the Magic Leap 1's attempts to solve the vergence-accommodation conflict |
4.5.14. | Manufacturing LCoS chips |
4.5.15. | Supply chains in LCoS for AR |
4.5.16. | Representative LCoS modulator providers and their unique products |
4.5.17. | Case study: OmniVision |
4.5.18. | Case study: Meadowlark Optics Inc. |
4.5.19. | Case study: Himax Technologies Inc. |
4.5.20. | Case study: Himax's front-lit LCoS |
4.5.21. | Summary: LCoS displays |
4.6. | Digital micromirror device (DMD)/digital light processing (DLP) displays |
4.6.1. | Digital micromirror device (DMD)/digital light processing (DLP) displays: overview |
4.6.2. | DLP displays in AR: example devices |
4.6.3. | DLP displays: introduction |
4.6.4. | Technology choices for DLP displays |
4.6.5. | Basic principles of DMD operation |
4.6.6. | DMD mirrors and wobulation: old vs. new |
4.6.7. | Illuminating DLP displays |
4.6.8. | Combining LED colors for DLP |
4.6.9. | Texas Instruments' Pico DMDs |
4.6.10. | The DLP supply chain |
4.6.11. | Case study: Snap, WaveOptics and DLP |
4.6.12. | The DLP/DMD ecosystem in AR |
4.6.13. | Comparing benchmarks: DLP vs. LCoS |
4.6.14. | DLP vs. LCoS: why has DLP lost ground? |
4.6.15. | Summary: DLP displays |
4.7. | Laser beam scanning (LBS) displays |
4.7.1. | Laser beam scanning (LBS): overview |
4.7.2. | LBS displays in AR: example devices |
4.7.3. | LBS displays: introduction |
4.7.4. | LBS development: where do firms differentiate? |
4.7.5. | The LBS ecosystem |
4.7.6. | Technology choices for LBS displays |
4.7.7. | LBS, holographic reflectors and retinal projection |
4.7.8. | Combining RGB lasers for color displays |
4.7.9. | Case study: software to ease alignment tolerances in LBS displays and AR devices |
4.7.10. | Scanning patterns and resonance: a tough tradeoff |
4.7.11. | MEMS mirrors: the heart of LBS devices |
4.7.12. | LBS has synergies with LiDAR technology |
4.7.13. | Case study: developing LBS systems alongside LiDAR |
4.7.14. | Supply chain crossover in LBS and LiDAR |
4.7.15. | Summary: LBS displays |
4.8. | Display backplanes and driving technologies |
4.8.1. | Overview: backplanes and driving technologies |
4.8.2. | Backplane technology choices: TFT materials |
4.8.3. | Low temperature polycrystalline oxide (LTPO): hybridized TFT materials for variable refresh rates |
4.8.4. | CMOS backplanes for displays |
4.8.5. | Display size and economics depend on backplane materials |
4.8.6. | Passive matrix addressing |
4.8.7. | Active matrix addressing: the ubiquitous addressing method |
4.8.8. | Pixel driving circuits for active matrix LCD and OLED |
4.8.9. | Pixel driving for micro-LEDs |
4.8.10. | Comparison between PM and AM addressing |
4.8.11. | Pulse amplitude modulation (PAM) and pulse width modulation (PWM) driving |
4.8.12. | Summary: backplanes and driving |
5. | "TRUE 3D" DISPLAYS |
5.1. | Overview: "true 3D" displays |
5.2. | The vergence-accommodation conflict |
5.3. | Solutions to the vergence-accommodation conflict for XR |
5.4. | Light field displays: reconstructing scenes from multiple viewpoints |
5.5. | Avoiding the resolution limit: sequential light field displays |
5.6. | Case study: CREAL's light field near-eye displays |
5.7. | Light field displays with laser beam scanning |
5.8. | Holography: reconstructing wavefronts |
5.9. | Computer-generated holography: digital hologram generation |
5.10. | VividQ: holographic displays for AR |
5.11. | SWOT: "true 3D" displays |
5.12. | Geometric phase lenses with eye tracking: the best alternative to "true 3D" displays? |
5.13. | What is geometric (Pancharatnam-Berry) phase? |
5.14. | Why geometric phase lenses matter |
5.15. | Liquid crystals and switchable waveplates |
5.16. | Liquid crystals in GPLs |
5.17. | Geometric phase lenses: SWOT |
5.18. | Summary: "true 3D" displays |
6. | COMPARATIVE BENCHMARKING OF DISPLAY TYPES |
6.1.1. | Introduction to display benchmarking |
6.2. | Benchmarking display types |
6.2.1. | Benchmarking criteria (I): commercial factors |
6.2.2. | Benchmarking criteria (II): technological factors |
6.2.3. | Benchmark performance: LCDs |
6.2.4. | Benchmark performance: OLED-on-TFT |
6.2.5. | Benchmark performance: OLED-on-Si |
6.2.6. | Benchmark performance: Micro-LED |
6.2.7. | Benchmark performance: LCoS |
6.2.8. | Benchmark performance: DLP |
6.2.9. | Benchmark performance: LBS |
6.2.10. | Unweighted comparison of all display types |
6.3. | Comparing application suitability |
6.3.1. | Comparing benchmarks: VR and AR displays |
6.3.2. | Commercial factor weightings: the same for all device types |
6.3.3. | Technological factor weightings: VR |
6.3.4. | VR displays: benchmark performance (plots) |
6.3.5. | VR displays: benchmark performance (discussion) |
6.3.6. | Technological factor weightings: Narrow FoV AR |
6.3.7. | Narrow FoV AR displays: benchmark performance (plots) |
6.3.8. | Narrow FoV AR displays: benchmark performance (discussion) |
6.3.9. | Technological factor weightings: Wide FoV AR |
6.3.10. | Wide FoV AR displays: benchmark performance (plots) |
6.3.11. | Wide FoV AR displays: benchmark performance (discussion) |
6.3.12. | Summary: display technology benchmarking |
7. | COMPANY PROFILES |
7.1. | DigiLens |
7.2. | Dispelix |
7.3. | HTC's Vive XR Elite: New Design Approaches in Virtual Reality |
7.4. | IQE |
7.5. | Jade Bird Display |
7.6. | Jade Bird Display |
7.7. | Lenovo: The ThinkReality A3 |
7.8. | LetinAR |
7.9. | Lumus |
7.10. | Lynx |
7.11. | Lynx — Q2 2022 Update |
7.12. | MICLEDI |
7.13. | MICROOLED |
7.14. | Mojo Vision |
7.15. | Oorym |
7.16. | Optinvent |
7.17. | OQmented |
7.18. | Ostendo Technologies |
7.19. | RayNeo (TCL) |
7.20. | Sony (CES 2023) |
7.21. | The Metaverse Standards Forum |
7.22. | TriLite Technologies |
7.23. | TruLife Optics |
7.24. | VitreaLab |
7.25. | VividQ |
7.26. | VividQ and Dispelix: Pairing Holographic Displays with Waveguides |
7.27. | VividQ: Visit and Tech Demo |