1. | EXECUTIVE SUMMARY |
1.1. | Introduction to Thermal Interface Materials (TIM) |
1.2. | Properties of Thermal Interface Materials |
1.3. | Thermal Conductivity Comparison of TIM Formats |
1.4. | Comparisons of Price and Thermal Conductivity |
1.5. | Differences between thermal pads and grease - (1) |
1.6. | Differences between thermal pads and grease - (2) |
1.7. | TIM by application - area forecast |
1.8. | TIM by application - mass forecast |
1.9. | TIM by application - market size/revenue forecast |
1.10. | TIM Forecast for EV Batteries |
1.11. | TIM Forecast for Data Centers |
1.12. | TIM requirements for data center applications |
1.13. | TIM Forecast for ADAS Sensors |
1.14. | TIM requirements for ADAS components |
1.15. | Trends in consumer electronics: TlM utilization |
1.16. | TIM & Heat Spreader Forecast For Consumer Electronics |
1.17. | Total TIM area forecast for 5G stations |
1.18. | Company Profiles |
2. | OVERVIEW |
2.1. | Introduction |
2.1.1. | Introduction to TIMs - (1) |
2.1.2. | Introduction to TIMs - (2) |
2.1.3. | Key Factors in System Level Performance |
2.1.4. | Thermal Conductivity vs Thermal Resistance |
2.2. | Comparison of Key Factors by TIM Form |
2.2.1. | Properties of Thermal Interface Materials |
2.2.2. | Comparisons of Price and Thermal Conductivity |
2.2.3. | Thermal Conductivity by TIM Format |
2.2.4. | Price Comparison of TIM Fillers and TIM Matrix |
2.2.5. | 1. Gap Pads |
2.2.6. | SWOT - Gap Pads |
2.2.7. | 2. Thermal Gels/ Gap Fillers |
2.2.8. | SWOT - Thermal Gels/Gap Fillers |
2.2.9. | 3. Thermal Greases |
2.2.10. | SWOT - Thermal Greases |
2.2.11. | 4. Phase Change Materials (PCMs) |
2.2.12. | SWOT - Phase Change Materials (PCMs) |
2.2.13. | 5. Adhesive Tapes |
2.2.14. | SWOT - Adhesive Tapes and TCA |
2.2.15. | 6. Potting/Encapsulants |
2.2.16. | SWOT - Potting/Encapsulants |
2.3. | Advanced TIMs |
2.3.1. | Summary of Advanced TIMs |
2.3.2. | Introduction |
2.3.3. | Metal Filled Polymer TIMs |
2.3.4. | Boron Nitride Nanostructures |
2.4. | TIM Dispensing Equipment |
2.4.1. | Dispensing TIMs Introduction |
2.4.2. | Challenges for Dispensing TIM |
2.4.3. | Low-volume Dispensing Methods |
2.4.4. | High-volume Dispensing Methods |
2.4.5. | Compatibility of Meter, Mix, Dispense (MMD) System |
2.4.6. | TIM Dispensing Equipment Suppliers |
2.4.7. | Use cases - TIM PrintTM - Suzhou Hemi Electronics |
2.5. | Historic Major TIM Acquisition |
2.5.1. | Henkel Acquires Bergquist |
2.5.2. | Parker Acquires Lord |
2.5.3. | DuPont Acquires Laird |
2.5.4. | Henkel Acquires Thermexit Business From Nanoramic |
2.5.5. | DuPont Failed to Acquire Rogers |
3. | TIMS IN EMI SHIELDING |
3.1. | Overview |
3.1.1. | Introduction to EMI shielding |
3.1.2. | EMI use-cases |
3.1.3. | Considerations of TIMs in EMI Shielding |
3.1.4. | EMI Shielding - Dielectric Constant |
3.2. | EMI and TIMs in ADAS |
3.2.1. | Applications of TIMs in EMI Shielding for ADAS Radars |
3.2.2. | Laird's - CoolShield and CoolShield-Flex Series |
3.2.3. | Density and Thermal Conductivity of TIMs for Radar |
3.2.4. | 3M — TIM and EMI for ECUs |
3.3. | EMI and TIMs in 5G |
3.3.1. | EMI is More Challenging in 5G |
3.3.2. | EMI Shielding - Next Growth Driver for TIMs |
3.3.3. | Antenna De-sense |
3.3.4. | Multifunctional TIMs as a Solution |
3.3.5. | Dual functionalities - heat dissipation and EMI shielding - Laird's CoolZorb (1) |
3.3.6. | Dual functionalities - heat dissipation and EMI shielding - Laird's CoolZorb (2) |
3.3.7. | EMI Gaskets |
3.3.8. | Laird |
3.3.9. | Schlegel - TIM and EMI |
3.3.10. | TIM Combined with EMI Shielding Properties |
3.4. | EMI and TIMs in other applications |
3.4.1. | Consumer Electronics - Graphite |
3.4.2. | Use-Case: Synthetic Graphite Sheet - DSN |
3.4.3. | Price Comparison of Graphite Sheets |
3.4.4. | Use Case: Panasonic G-TIM (1) |
3.4.5. | Use Case: Panasonic G-TIM (2) |
3.4.6. | Players - EMI TIMs |
4. | TIM IN EV BATTERY PACKS |
4.1. | Introduction |
4.1.1. | Introduction to thermal interface materials for EVs |
4.1.2. | TIM pack and module overview |
4.1.3. | TIM application - pack and modules |
4.1.4. | TIM application by cell format |
4.1.5. | Key properties for TIMs in EVs |
4.1.6. | Gap pads in EV batteries |
4.1.7. | Switching to gap fillers from pads |
4.1.8. | Dispensing TIMs introduction |
4.1.9. | Challenges for dispensing TIM |
4.1.10. | Thermally conductive adhesives in EV batteries |
4.1.11. | Material options and market comparison |
4.1.12. | TIM chemistry comparison |
4.1.13. | The silicone dilemma for the automotive market |
4.1.14. | Thermal interface material fillers for EV batteries |
4.1.15. | TIM filler comparison and adoption |
4.1.16. | Thermal conductivity comparison of suppliers |
4.1.17. | Factors impacting TIM pricing |
4.2. | TIM in cell-to-pack designs |
4.2.1. | TIM pricing by supplier |
4.2.2. | What is cell-to-pack? |
4.2.3. | Drivers and challenges for cell-to-pack |
4.2.4. | What is cell-to-chassis/body? |
4.2.5. | Cell-to-pack and Cell-to-body Designs Summary |
4.2.6. | Gravimetric energy density and cell-to-pack ratio |
4.2.7. | Outlook for cell-to-pack & cell-to-body designs |
4.2.8. | Gap filler to thermally conductive adhesives |
4.2.9. | Thermal conductivity shift |
4.3. | TIM players in EVs |
4.3.1. | TCA requirements |
4.3.2. | Bostik |
4.3.3. | DEMAK |
4.3.4. | Dow |
4.3.5. | DuPont |
4.3.6. | ELANTAS |
4.3.7. | Elkem |
4.3.8. | Epoxies Etc. |
4.3.9. | H.B. Fuller |
4.3.10. | Henkel |
4.3.11. | Momentive |
4.3.12. | Parker Lord |
4.3.13. | Polymer Science |
4.3.14. | Sekisui |
4.3.15. | Shin-Etsu |
4.3.16. | Wacker Chemie |
4.4. | TIM EV use cases |
4.4.1. | Audi e-tron |
4.4.2. | BYD Blade |
4.4.3. | Chevrolet Bolt |
4.4.4. | Fiat 500e |
4.4.5. | Ford Mustang Mach-E |
4.4.6. | MG ZS EV |
4.4.7. | Nissan Leaf |
4.4.8. | Smart Fortwo (Mercedes) |
4.4.9. | EV use-case: Hyundai IONIQ 5/Kia EV6 |
4.4.10. | Rivian R1T |
4.4.11. | Tesla Model 3/Y |
4.4.12. | Tesla 4680 pack |
4.4.13. | EV use-case summary |
4.5. | TIM forecasts for EVs |
4.5.1. | TIM use by vehicle and by year |
4.5.2. | TIM demand per vehicle |
4.5.3. | TIM Forecast for EV batteries by TIM type (kg) |
4.5.4. | TIM forecast for EV batteries by TIM type (revenue, US$) |
4.5.5. | TIM Forecast for EV batteries by vehicle type (kg and US$) |
5. | TIMS IN DATA CENTERS |
5.1. | Overview |
5.1.1. | Introduction to data centers |
5.1.2. | Thermal management needs for data centers |
5.1.3. | Power use effectiveness |
5.1.4. | Data center downtime causes significant problems |
5.1.5. | Data center equipment - top level overview |
5.1.6. | Data center structure |
5.1.7. | Data center switch topology - three layer and spine-leaf architecture |
5.1.8. | K-ary fat tree topology |
5.2. | TIM data center players and use cases |
5.2.1. | Where are TIMs used in data centers? |
5.2.2. | Common types of TIMs in data centers - line card level |
5.2.3. | TIMs in data centers - line card level - transceivers |
5.2.4. | TIMs in server boards |
5.2.5. | Server board layout |
5.2.6. | TIMs for data center - server boards, switches and routers |
5.2.7. | Data Center Switch Players |
5.2.8. | How TIMs are used in data center switches - FS N8560-32C 32x 100GbE Switch |
5.2.9. | WS-SUP720 supervisor 720 module |
5.2.10. | Ubiquiti UniFi USW-Leaf Switch |
5.2.11. | FS S5850-48S6Q 48x 10GbE and 6x 40GbE Switch |
5.2.12. | Cisco Nexus 7700 Supervisor 2E module |
5.2.13. | How does data center power supply system work? |
5.2.14. | TIMs for power supply converters (1): AC-DC and DC-DC |
5.2.15. | TIMs for data center power supplies (2) |
5.2.16. | TIMs for data center power supplies (3) |
5.2.17. | How TIMs are used in data center power supplies (4) |
5.2.18. | How TIMs are Used in Data Center Power Supplies (5) |
5.2.19. | How TIMs are used in data center power supply (6) |
5.2.20. | TIMs for data centers - power supply converters |
5.3. | TIMs in data center - trends and forecasts |
5.3.1. | TIM trends in data centers |
5.3.2. | Estimating the TIM areas in server boards |
5.3.3. | Number of server boards per rack and data center |
5.3.4. | Total TIM area in server boards |
5.3.5. | Estimating the number of data center switches |
5.3.6. | Area of TIM per switch |
5.3.7. | TIM area for leaf and spine switch |
5.3.8. | TIM area for leaf and spine switch forecast |
5.3.9. | TIM consumption in data center power supplies |
5.3.10. | Number of power supplies forecast and TIM area forecast |
5.3.11. | Forecast summary - TIM area for different data center components |
5.3.12. | Forecast summary - TIM mass for different data center components |
5.3.13. | Forecast summary - TIM revenue for different data center components |
5.3.14. | TIM requirements for data center applications |
6. | TIMS IN CONSUMER ELECTRONICS |
6.1. | Overview |
6.1.1. | Introduction |
6.1.2. | Thermal Management Differences: 4G vs 5G Smartphones |
6.2. | Use cases |
6.2.1. | Overview of Thermal Management Materials Application Areas |
6.2.2. | Use-case: Apple iPhone X |
6.2.3. | Use-case: Samsung Galaxy S9 (1) |
6.2.4. | Use-case: Samsung Galaxy S9 (2) |
6.2.5. | Galaxy Note 9 Carbon Water Cooling System |
6.2.6. | Use-case: Oppo R17 |
6.2.7. | Use-case: Samsung Galaxy S10 and S10e |
6.2.8. | Use-case: LG v50 ThinQ 5G |
6.2.9. | Use-case: Samsung Galaxy S10 5G |
6.2.10. | Use-case: Samsung Galaxy Note 10+ 5G |
6.2.11. | Use-case: Apple iPhone 12 |
6.2.12. | Use-case: LG v60 ThinQ 5G |
6.2.13. | Use-case: Nubia Red Magic 5G |
6.2.14. | Use-case: Samsung Galaxy S20 5G |
6.2.15. | Use-case: Samsung Galaxy S21 5G |
6.2.16. | Use-case: Samsung Galaxy Note 20 Ultra 5G |
6.2.17. | Use-case: Huawei Mate 20 X 5G |
6.2.18. | Use-case: Sony Xperia Pro |
6.2.19. | Use-case: Apple iPhone 13 Pro |
6.2.20. | Use-case: Google Pixel 6 Pro |
6.2.21. | Use-case: iPhone 14 Pro Max |
6.2.22. | Use case: Samsung Galaxy Z Fold4 |
6.2.23. | Use case: Oneplus Pro 10 |
6.2.24. | Smartphone Thermal Material Estimate Summary |
6.2.25. | Trends in Smartphone Thermal Material Utilization |
6.2.26. | Graphitic Heat Spreaders |
6.2.27. | Emerging Advanced Material Solutions |
6.2.28. | Insulation Material |
6.2.29. | Insulation Material (2) |
6.2.30. | Use case: iPad Pro 9.7" |
6.2.31. | Use case: iPad Pro 11" |
6.2.32. | Use case: Samsung galaxy tab A8 |
6.2.33. | Use case: MacBook Pro 2019 |
6.2.34. | Use case: MacBook Air 2022 - could more effective TIM help to remove traditional fan cooling? |
6.2.35. | Use case: Microsoft Surface Laptop 3 13.5'' |
6.2.36. | Use case: Microsoft Surface Laptop 5 |
6.2.37. | Use case: HUAWEI MateBook D 14 |
6.2.38. | Trends in Consumer Electronics: TIM Utilization |
6.3. | Forecasts |
6.3.1. | Consumer Electronics Unit Forecast |
6.3.2. | Thermal Interface Material and Heat Spreader Area Forecast in Consumer Electronics |
6.3.3. | Thermal Interface Material and Heat Spreader Mass Forecast in Consumer Electronics |
6.3.4. | Thermal Interface Material and Heat Spreader Market Size Forecast in Consumer Electronics |
7. | TIMS IN ADAS |
7.1. | Introduction |
7.1.1. | Typical Sensor Suite for Autonomous Cars |
7.1.2. | The Sensor Trifactor |
7.1.3. | Sensors and Their Purpose |
7.2. | Thermal Management in ADAS Sensors |
7.2.1. | What are the Challenges? |
7.3. | TIMs for ADAS Cameras |
7.3.1. | Camera Anatomy |
7.3.2. | Thermal Interface Materials for ADAS Cameras |
7.3.3. | Bosch ADAS Camera |
7.3.4. | Tesla's Triple Lens Camera |
7.3.5. | ZF S-Cam4 Triple and Single Lens Cameras |
7.4. | TIMs for ADAS Radar |
7.4.1. | Radar Anatomy |
7.4.2. | Board Trends |
7.4.3. | Radars are Getting Smaller |
7.4.4. | Thermal Interface Materials for ADAS Radars |
7.4.5. | Bosch 77 GHz Radar |
7.4.6. | Bosch Mid-Range Radar |
7.4.7. | MANDO Long-Range Radar |
7.4.8. | DENSO DNMWR006 Radar |
7.4.9. | DENSO DNMWR010 Radar |
7.4.10. | GM Adaptive Cruise Control Radar |
7.4.11. | TIM with Radar Board Trends |
7.5. | TIMs for ADAS LiDAR |
7.5.1. | Temperature and LiDAR |
7.5.2. | LiDAR Thermal Considerations |
7.5.3. | Thermal for LiDAR |
7.5.4. | Thermal Interface Materials for ADAS LiDAR |
7.5.5. | 3irobotics Delta3 |
7.5.6. | Continental Short-Range LiDAR |
7.5.7. | Ouster OS1-64 LiDAR |
7.5.8. | Valeo Scala LiDAR |
7.6. | TIMs for ADAS Computers and ECUs |
7.6.1. | Possible New TIM Locations: Laser Driver Dies |
7.6.2. | Computers and ECUs in ADAS |
7.6.3. | Lack of TIMs in Previous ECU Designs |
7.6.4. | Audi zFAS Computer |
7.6.5. | Tesla's Computer Generations |
7.6.6. | Tesla's Liquid-Cooled MCU/ECU |
7.6.7. | Thermal Interface Materials in the ECU |
7.6.8. | ADAS Chip Power Progression |
7.6.9. | 3M — TIM and EMI for ECUs |
7.6.10. | Henkel — ECU Case Study |
7.6.11. | Audi zFAS |
7.6.12. | Tesla HW 2.5 |
7.6.13. | Tesla HW 3.0 |
7.7. | TIM Players in ADAS |
7.7.1. | 3M |
7.7.2. | Dow |
7.7.3. | Fujipoly |
7.7.4. | GLPOLY |
7.7.5. | Henkel — TIM for Cameras |
7.7.6. | Henkel — TIM for Radars |
7.7.7. | Laird — ADAS TIMs |
7.7.8. | Momentive |
7.7.9. | Parker — TIMs for Cameras |
7.7.10. | Sekisui |
7.7.11. | Shin Etsu |
7.7.12. | Summary of Performance for TIM Players |
7.7.13. | Thermal Interface Materials for ADAS Sensors |
7.8. | TIM Requirements and Total Forecasts for ADAS Sensors |
7.8.1. | TIM Requirements for ADAS Components |
7.8.2. | TIM Properties by Application |
7.8.3. | Density and Thermal Conductivity of TIMs for ADAS |
7.8.4. | TIM Requirements for ADAS Components |
7.8.5. | TIM Forecast for ADAS (Area) 2020-2033 |
7.8.6. | TIM Forecast for ADAS (Tonnes) 2020-2033 |
7.8.7. | TIM: Price Analysis |
7.8.8. | TIM Forecast for ADAS ($ Millions) 2020-2033 |
8. | TIMS IN 5G |
8.1. | Overview |
8.1.1. | Anatomy of a Base Station: Summary |
8.1.2. | Baseband Processing Unit and Remote Radio Head |
8.1.3. | Path Evolution from Baseband Unit to Antenna |
8.1.4. | TIM Types in 5G |
8.1.5. | Value Proposition for Liquid TIMs |
8.2. | TIM Suppliers for 5G |
8.2.1. | 3M - Boron Nitride Fillers |
8.2.2. | GLPOLY |
8.2.3. | Henkel - Liquid TIMs for Data & Telecoms |
8.2.4. | Honeywell |
8.2.5. | Laird (DuPont) |
8.2.6. | Momentive |
8.2.7. | NeoGraf |
8.2.8. | Parker |
8.2.9. | TIM Suppliers Targeting 5G Applications |
8.2.10. | TIM Properties and Players for 5G Infrastructure |
8.3. | TIMs for Antenna |
8.3.1. | TIM Example: Samsung 5G Access Point |
8.3.2. | TIM Example: Samsung Outdoor CPE Unit |
8.3.3. | TIM Example: Samsung Indoor CPE Unit |
8.3.4. | TIM Forecast for 5G Antenna by Station Size |
8.3.5. | TIM Forecast for 5G Antenna by Station Frequency |
8.4. | TIMs for BBU |
8.4.1. | The Six Components of a Baseband Processing Unit |
8.4.2. | Thermal Material Opportunities for the BBU |
8.4.3. | Examples of 5G BBUs |
8.4.4. | TIM in BBUs |
8.4.5. | BBU Parts I: Main Control Board |
8.4.6. | BBU Parts II & III: Baseband Processing Board & Transmission Extension Board |
8.4.7. | BBU Parts IV & V: Radio Interface Board & Satellite-card Board |
8.4.8. | BBU parts VI: TIM Area in the Power Supply Board |
8.4.9. | Summary |
8.4.10. | TIM for 5G BBU |
8.5. | TIMs for 5G Power Supplies |
8.5.1. | Power Consumption in 5G |
8.5.2. | Challenges to the 5G Power Supply Industry |
8.5.3. | The Dawn of Smart Power? |
8.5.4. | GaN Systems - GaN Power Supply and Wireless Power |
8.5.5. | Power Consumption Forecast for 5G |
8.5.6. | TIM Forecast for Power Supplies |
8.6. | Total TIM Forecasts for 5G |
8.6.1. | Total TIM Area Forecast for 5G Stations: 2023-2033 |
8.6.2. | Total TIM Mass Forecast for 5G Stations: 2023-2033 |
8.6.3. | Total TIM Revenue Forecast for 5G Stations: 2023-2033 |
8.6.4. | Total TIM Area Forecast for 5G Stations: 2023-2033 |
9. | FORECAST SUMMARY |
9.1. | TIM area forecast summary by application |
9.1.1. | TIM By Application - Area Forecast: 2023-2033 |
9.1.2. | TIM Area Forecast for EV Batteries: 2023-2033 |
9.1.3. | TIM Area Forecast for 5G Stations: 2023-2033 |
9.1.4. | TIM Area Forecast for ADAS: 2023-2033 |
9.1.5. | TIM and Heat Spreader Area Forecast for Consumer Electronics: 2023-2033 |
9.1.6. | TIM Area Forecast For Data Centers: 2023-2033 |
9.2. | TIM mass forecast by application |
9.2.1. | TIM By Application - Mass Forecast: 2023-2033 |
9.2.2. | TIM Mass Forecast for 5G Stations: 2023-2033 |
9.2.3. | TIM Mass Forecast for ADAS: 2023-2033 |
9.2.4. | TIM and Heat Spreader Mass Forecast For Consumer Electronics: 2023-2033 |
9.2.5. | TIM Mass Forecast For Data Centers: 2023-2033 |
9.2.6. | TIM Mass Forecast for EV batteries: 2023-2033 |
9.3. | TIM revenue forecast by application |
9.3.1. | Unit TIM Price Forecast: 2023 - 2033 |
9.3.2. | TIM Revenue Forecast: 2023-2033 |
9.3.3. | TIM Revenue Forecast for 5G Stations: 2023-2033 |
9.3.4. | TIM Revenue Forecast For ADAS: 2020-2033 |
9.3.5. | TIM and Heat Spreader Mass Forecast For Consumer Electronics: 2023-2033 |
9.3.6. | TIM Revenue Forecast For Data Center: 2023-2033 |
9.3.7. | TIM Revenue Forecast for EV Batteries: 2023-2033 |
10. | COMPANY PROFILES |
10.1. | 3M |
10.2. | ADA Technologies |
10.3. | AluChem |
10.4. | AOS Thermal |
10.5. | Arieca |
10.6. | AzTrong |
10.7. | Bando |
10.8. | Bdtronic |
10.9. | BNNano |
10.10. | BNNT |
10.11. | Cambridge Nanotherm |
10.12. | Carbice |
10.13. | CondAlign |
10.14. | Dexerials |
10.15. | Deyang Carbonene |
10.16. | Dow Corning |
10.17. | Dupont |
10.18. | Enerdyne |
10.19. | Fujipoly |
10.20. | Henkel |
10.21. | Hitek Electronic Materials |
10.22. | HyMet Thermal Interfaces |
10.23. | Indium Corporation |
10.24. | Inkron |
10.25. | KULR Technology |
10.26. | Nanoramic Laboratories |
10.27. | NeoGraf Solutions |
10.28. | Parker Lord |
10.29. | Polymatech |
10.30. | Schlegel Electronic Materials |
10.31. | Sixth Element |
10.32. | Smart High Tech |