1. | EXECUTIVE SUMMARY |
1.1. | Report Introduction |
1.2. | Power Electronics in Electric Vehicles |
1.3. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
1.4. | Power Electronics & Battery Shortages |
1.5. | SiC Drives 800V Platforms |
1.6. | EV Markets Surge in 2022 |
1.7. | Inverter Forecast 2020-2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
1.8. | Discretes vs Power Modules for Inverters 2020-2033 |
1.9. | Inverter Power Density Increases Over Time |
1.10. | Automotive: Key Application for Sintering |
1.11. | Power Electronics: Materials Trends Overview |
1.12. | Inverter Market Share 2020-2033: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
1.13. | 800V Model Announcements in China (2022) |
1.14. | Evolving SiC Supply Relationships |
1.15. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
1.16. | OBC & DC-DC Converter: Si, SiC, GaN 2020 - 2033 (GW) |
1.17. | Inverter, OBC, DC-DC Converter 2020-2023 (GW) |
1.18. | Inverter, OBC, DC-DC Converter 2020-2023 (US$ billion) |
1.19. | IDTechEx Company Profiles |
2. | ELECTRIC VEHICLE MARKETS: REGIONAL TRENDS & FUTURE GROWTH |
2.1. | Electric Vehicle Definitions |
2.2. | Electric Vehicles: Typical Specs |
2.3. | Exponential Growth in Regional EV Markets |
2.4. | Summary of Regional Trends & Drivers for EVs in 2022 |
2.5. | Regional Trends: China |
2.6. | NEV Sales by Vehicle Class |
2.7. | The Dual-Credit System (1) |
2.8. | The Dual-Credit System (2) |
2.9. | Regional Trends: EU + UK + EFTA |
2.10. | Europe Emissions Standards |
2.11. | EU ICE Ban by 2035 |
2.12. | EU 'Fit for 55' |
2.13. | Regional Trends: US |
2.14. | Electric Pickups - The Next Big Thing |
2.15. | Hybrid Car Sales Surges |
2.16. | Powertrain Tailpipe Emissions Comparison |
2.17. | Automaker & Government EV Targets |
2.18. | Cars: Total Cost of Ownership |
2.19. | Shortages Across the Supply Chain |
2.20. | Grid Emissions (1) |
2.21. | Grid Emissions (2) |
2.22. | Chip Shortages - Background |
2.23. | Semiconductor Content Increased |
3. | OVERVIEW OF EV POWER ELECTRONICS & WBG SEMICONDUCTORS |
3.1. | What is Power Electronics? |
3.1.1. | Power Electronics Use in Electric Vehicles |
3.1.2. | Transistor History & MOSFET Overview |
3.1.3. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages |
3.1.4. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
3.1.5. | Advantages of SiC Material |
3.1.6. | Limitations of SiC Power Devices |
3.1.7. | GaN's Potential to Reach High Voltage |
3.1.8. | SiC & GaN Have Substantial Room for Improvement |
3.1.9. | Automotive GaN Device Suppliers are Growing |
3.1.10. | GaN to Become Preferred OBC Technology |
3.1.11. | Challenges for GaN Devices |
3.1.12. | SiC Power Roadmap |
3.1.13. | Applications Summary for WBG Devices |
3.2. | Inverter, OBC, Converter Design & Si, SiC, GaN Outlook |
3.2.1. | Inverter Overview |
3.2.2. | Pulse Width Modulation |
3.2.3. | Traditional EV Inverter |
3.2.4. | Discretes & Modules |
3.2.5. | Inverter Printed Circuit Boards |
3.2.6. | Electric Vehicle Inverter Benchmarking |
3.2.7. | SiC Impact on the Inverter Package |
3.2.8. | Inverter Forecast 2020 - 2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
3.2.9. | OBC & DC-DC Converter: Si, SiC, GaN 2020-2033 (GW) |
3.2.10. | Onboard Charger Circuit Components |
3.2.11. | Tesla Onboard Charger / DC-DC Converter |
3.2.12. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
4. | SUPPLY CHAIN FOR POWER SEMICONDUCTOR MATERIALS, DEVICES & OEMS |
4.1. | Automotive Power SC Supplier Market Shares |
4.2. | Evolving SiC Supply Relationships |
4.3. | SiC Supply Chain in 2023 |
4.4. | Infineon CoolSiC Efficiency Gains |
4.5. | Infineon Establishing Major OEM Partnerships |
4.6. | Hyundai Diversifies SiC Supply for Best-Selling 800V E-GMP Platform |
4.7. | ROHM Semiconductor Expands SiC Production Capacity |
4.8. | STMicroelectronics Releases ACEPACK in Race for Market Leadership |
4.9. | Wolfspeed: Major Investment & OEM Partnerships for SiC |
4.10. | Delphi Technologies (BorgWarner) Supply Luxury Automakers with Viper SiC Module |
4.11. | BorgWarner Integrated Drive Module for Ford |
4.12. | On Semi EliteSiC |
4.13. | GM From Bolt & Volt to Ultium |
4.14. | Hitachi Double Sided IGBTs to Major OEM |
4.15. | Volvo Heavy Duty SiC Inverter |
4.16. | Continental / Jaguar Land Rover |
4.17. | Nissan Leaf Custom Design |
5. | POWER ELECTRONICS PACKAGES: EV USE-CASES |
5.1. | Toyota Prius 2004-2010 |
5.2. | 800V Si IGBT Choices |
5.3. | 2008 Lexus |
5.4. | Toyota Prius 2010-2015 |
5.5. | Nissan Leaf 2012 |
5.6. | Honda Accord 2014 |
5.7. | Honda Fit (by Mitsubishi) |
5.8. | Toyota Prius 2016 Onwards |
5.9. | Chevrolet Volt 2016 (by Delphi) |
5.10. | Cadillac 2016 (by Hitachi) |
5.11. | BWM i3 (by Infineon) |
5.12. | STMicro |
5.13. | Continental / Jaguar Land Rover Inverter |
5.14. | Nissan Leaf Custom Inverter Design |
5.15. | Danfoss |
5.16. | BorgWarner |
5.17. | onsemi |
6. | EVOLUTION OF PACKAGE MATERIALS & THERMAL MANAGEMENT: DIE-ATTACH, WIRE BONDING, TIM, WATER/OIL COOLING AND MORE |
6.1. | Overview |
6.1.1. | Power Module Packaging Over the Generations |
6.1.2. | Power Electronics Material Evolution |
6.1.3. | Automotive: Key Application for Sintering |
6.1.4. | Module Packaging Material Dimensions |
6.1.5. | OEM Power Module Material Innovations |
6.1.6. | Die Attach Materials: Solder, Ag & Cu Sintering & Key Players |
6.1.7. | WBG Moves Beyond the Limits of SAC |
6.1.8. | Inverter Power Density Increases Over Time |
6.1.9. | Die and Substrate Attach are Common Failure Modes |
6.1.10. | Ag Sintering with WBG Semiconductors |
6.1.11. | Resolving Challenges with Ag Sintering |
6.1.12. | Nano Particle Ag Sinter |
6.1.13. | Power Module Supply Chain & Innovations |
6.1.14. | Summary of Ag sintering, Solder and TLPB |
6.1.15. | Toyo Chem: Sintered Die Attach Paste |
6.1.16. | LG: Ag Sintering Paste with Low Sintering Temperature |
6.1.17. | Amo Green: Pressure-less Nano Ag Sintering Paste |
6.1.18. | Indium Corp: Nano Ag Pressure-less Sinter Paste |
6.1.19. | Nihon Superior: Nano Silver for Sintering |
6.1.20. | Cu Sintering Pastes Improve Ag Sintered Performance |
6.1.21. | Hitachi: Cu Sintering Paste |
6.1.22. | Cu Sintering: Characteristics |
6.1.23. | Reliability of Cu Sintered Joints |
6.1.24. | Mitsui Mining: Nano Copper Pressured and Pressure-less Sintering Under N2 Environment |
6.1.25. | Mitsui Mining: Nano Copper Pressure-less Sintering Under N2 Environment |
6.1.26. | Die Attach Technology Trends |
6.1.27. | Wire Bond Evolution & Future Alternatives |
6.1.28. | Wire Bonds a Failure Point |
6.1.29. | Alternative Wire Bonding Techniques |
6.1.30. | Die Top System - Heraeus |
6.1.31. | Direct Lead Bonding (Mitsubishi) |
6.1.32. | Tesla Inverter Design Evolution |
6.1.33. | Embedded Lead Frames for Thermal Performance |
6.1.34. | Technology Evolution Beyond Al Wire Bonding |
6.2. | Substrate Materials & Future Alternatives |
6.2.1. | The Choice of Ceramic Substrate Technology |
6.2.2. | AlN: Overcoming its Mechanical Weakness |
6.2.3. | Thermal Conductivity vs Thermal Expansion |
6.2.4. | Ceramics: CTE Mismatch |
6.2.5. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
6.2.6. | Direct Plated Copper (DPC): Pros and Cons |
6.2.7. | Double Bonded Copper (DBC): Pros and Cons |
6.2.8. | Active Metal Brazing (AMB): Pros and Cons |
6.2.9. | Thick Film Printing |
6.2.10. | Heraeus - Materials for Power Electronics |
6.2.11. | ALMT - MgSiC Baseplate |
6.3. | Thermal Management |
6.3.1. | Optimal Temperatures for Multiple Components |
6.3.2. | Single Side, Double Side, Direct, and Direct Cooling |
6.3.3. | Double-Sided Cooling Examples |
6.3.4. | Baseplate, Heat sink, and Encapsulation Materials |
6.3.5. | Removing Thermal Interface Materials |
6.3.6. | Why TIM is Used in Power Electronics |
6.3.7. | Why the Drive to Eliminate the TIM? |
6.3.8. | Thermal Grease: Other Shortcomings |
6.3.9. | EV Inverter Modules Where TIM has Been Eliminated (1) |
6.3.10. | EV Inverter Modules Where TIM has Been Eliminated (2) |
6.3.11. | Infineon - Pre-Applied TIM |
6.3.12. | IGBTs and SiC are not the Only TIM Area in Inverters |
6.3.13. | Cooling power electronics: water or oil |
6.3.14. | Inverter Package Cooling |
6.3.15. | Drivers for Direct Oil Cooling of Inverters |
6.3.16. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters |
6.3.17. | Direct Oil Cooling Projects |
6.3.18. | Inverter Cooling Strategy Forecast (Units) |
6.3.19. | Ford Mustang Mach-E |
6.3.20. | Fraunhofer and Marelli - Directly Cooled Inverter |
6.3.21. | Hitachi - Oil Cooled Inverter |
6.3.22. | Jaguar I-PACE 2019 |
6.3.23. | Lucid - Water Cooled Onboard Charger |
6.3.24. | Nissan Leaf |
6.3.25. | Renault Zoe 2013 (Continental) |
6.3.26. | Rivian |
6.3.27. | Senior Flexonics - IGBT Heat Sink Design |
6.3.28. | Tesla Model 3 |
6.3.29. | VW ID |
7. | HIGH VOLTAGE PLATFORM (800V) MARKET DRIVERS & FUTURE DEVELOPMENTS |
7.1. | SiC Drives 800V Platforms |
7.2. | Emerging 800V Platforms & SiC Inverters |
7.3. | Inverter Market Share 2020 - 2033: SiC 1200V, SiC 600V, GaN 600V, Si IGBT 600V |
7.4. | 800V Model Announcements in China (2022) |
7.5. | 800V For & Against |
7.6. | DCFC Impact on Li-ion Cells |
7.7. | Fast Charge Cell Design Hierarchy - Levers to Pull |
7.8. | DC Fast Charging Levels |
7.9. | AC & DC Charging Installations 2015-2032 |
7.10. | 800V Platform Discussion & Outlook |
8. | FORECASTS |
8.1. | Exponential Growth in Regional EV Markets |
8.2. | Methodology |
8.3. | Inverters per Car Forecast |
8.4. | Multiple Motors / Inverters per Vehicle |
8.5. | Inverter Forecast 2020 - 2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
8.6. | Inverter Market Share 2020 - 2033: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
8.7. | Inverter Cooling Strategy Forecast (Units) |
8.8. | Discretes vs Power Modules for Inverters 2020 - 2033 |
8.9. | OBC & DC-DC Converter: Si, SiC, GaN 2020 - 2033 (GW) |
8.10. | Inverter, OBC, DCDC Converter 2020 - 2023 (GW) |
8.11. | Inverter, OBC, DCDC Converter 2020 - 2023 (US$ billion) |
8.12. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
8.13. | Inverter, OBC & Converter, Si, SiC, GaN Cost Assumptions (US$ per kW) |
8.14. | AC & DC Charging Installations 2015-2032 |
9. | COMPANY PROFILES |
9.1. | Dynex |
9.2. | Efficient Power Conversion: GaN FETs |
9.3. | Elaphe |
9.4. | Equipmake |
9.5. | ESI Automotive |
9.6. | General Electric: Megawatt Converters |
9.7. | Infineon |
9.8. | IQE |
9.9. | Nexperia: GaN for EV Power Electronics |
9.10. | Power Electronics: EV Charging |