1. | EXECUTIVE SUMMARY |
1.1. | Introduction |
1.2. | Report scope |
1.3. | Accompanying database with more than 400 forecast lines |
1.4. | Where semiconductors are found in vehicles |
1.5. | MCU count on vehicles of the future |
1.6. | Semiconductor makers and key terminology |
1.7. | Top-down wafer market size estimate |
1.8. | Foundry technologies over time |
1.9. | SAE Levels of Automation in Cars |
1.10. | ADAS adoption |
1.11. | Semiconductors in ADAS systems |
1.12. | Robotaxis and mobility as a service coming soon |
1.13. | Semiconductors in autonomous systems |
1.14. | Semiconductor suppliers by ADAS/AD Component |
1.15. | MCU characteristics |
1.16. | High performance computers for automotive |
1.17. | Computational efficiency |
1.18. | Radar in automotive |
1.19. | Radar anatomy and semiconductor impacting trends |
1.20. | Transceivers Semiconductor Trends: Virtual Channels |
1.21. | Automotive radar trending towards more advanced silicon |
1.22. | Automotive LiDARs |
1.23. | Semiconductors in LiDAR |
1.24. | LiDAR trends impacting semiconductor demand |
1.25. | Cameras in ADAS and AV systems |
1.26. | 300mm silicon wafers forecast for ADAS and AV - 2023-2033 |
1.27. | Non silicon semiconductors for ADAS and AV forecast - 2023-2033 |
1.28. | Semiconductor wafer revenue for ADAS and AV applications forecast - 2023-2033 |
1.29. | EV power electronics trends impacting semiconductors |
1.30. | The rise of electric vehicles- 2023-2033 |
1.31. | Semiconductors in BMS core hardware |
1.32. | Vehicle automation and electrification doubles semiconductor value in vehicles |
1.33. | CHIPS acts to improve automotive shortages |
1.34. | 300mm semiconductor wafers for electrification forecast - 2023-2033 |
1.35. | Revenue from semiconductor wafers in electrification forecast - 2023-2033 |
1.36. | Total automotive semiconductor wafer demand forecast - 2023-2033 |
1.37. | Semiconductor mineral demand forecast for automotive - 2023-2033 |
1.38. | Semiconductor wafer revenue forecast across automotive industry - 2023-2033 |
1.39. | 24 included company profiles |
2. | SEMICONDUCTOR PRODUCTION AND SUPPLY CHAIN |
2.1. | Overview |
2.1.1. | From raw material to product |
2.1.2. | Supply chain |
2.1.3. | Making smaller chips, greater yields |
2.1.4. | Semiconductor value chain |
2.1.5. | Semiconductor company in-house abilities |
2.1.6. | Even split between company types |
2.1.7. | Company locations |
2.1.8. | Semiconductor foundry in-house technologies |
2.1.9. | Trend toward fabless tier 2s for high performance. |
2.1.10. | Companies outsourcing to TSMC |
2.1.11. | Shortages |
2.1.12. | Top-down wafer market size estimate |
2.1.13. | Increasing supply - Infineon's new Villach site |
2.1.14. | Increasing supply - Texas Instruments new fab in Sherman, Texas |
2.2. | Trends from the chip makers, next gen transistors, and technology roadmaps. |
2.2.1. | The drive for smaller node technologies |
2.2.2. | Key parameter of growth for processor and memory (1) |
2.2.3. | Key parameter of growth for processor and memory (2) |
2.2.4. | The economics of scaling |
2.2.5. | Foundry technologies over time |
2.2.6. | Routes to increase I/O density |
2.2.7. | Semiconductor foundries and their roadmap |
2.2.8. | Cutting edge for automotive |
2.2.9. | Transistor device development (1) |
2.2.10. | Transistor device development (2) |
2.2.11. | Key parameters for transistor device scaling |
2.2.12. | Evolution of transistor device architectures |
2.2.13. | CNTs for transistors |
2.2.14. | CNFET research breakthrough (1) |
2.2.15. | CNFET research breakthrough (2) |
2.2.16. | CNFET case study (1) |
2.2.17. | 3D SOC |
2.2.18. | On-chip memory |
2.2.19. | Routes to increase I/O density |
2.2.20. | Advanced technologies for automotive |
3. | SEMICONDUCTORS FOR ADAS SENSORS, AUTONOMOUS VEHICLE SENSORS AND HIGH-PERFORMANCE COMPUTING IN VEHICLES |
3.1. | Introduction to ADAS and AV |
3.1.1. | SAE Levels of Automation in Cars |
3.1.2. | Functions of Autonomous Driving at Different Levels |
3.1.3. | Adoption of ADAS (1) |
3.1.4. | Adoption of ADAS (2) |
3.1.5. | Safety Mandated Features Driving Wider Radar Adoption. |
3.2. | ADAS and autonomous vehicle sensor suites |
3.2.1. | Semiconductors in the ADAS system |
3.2.2. | Semiconductors in ADAS systems |
3.2.3. | Level 2 senor suite and semiconductors |
3.2.4. | Semiconductors in autonomous systems |
3.2.5. | SAE level 3 sensor suite and semiconductors |
3.2.6. | Level 4 private: The Trifactor |
3.2.7. | Level 4 MaaS: The Trifactor |
3.2.8. | ADAS products - example product page |
3.2.9. | Level 2 - purchasing systems not components |
3.2.10. | Case study - Tesla |
3.2.11. | Case study - Audi A8 (2017) |
3.2.12. | Case study - Honda Legend |
3.2.13. | Case study - Mercedes S-Class (2021) |
3.2.14. | Case study - VW Golf (2021) |
3.2.15. | Case study - Lexus LS, Toyota Mirai (2021) |
3.2.16. | Robotaxi case study - Waymo |
3.2.17. | Robotaxi case study - Cruise |
3.2.18. | Robotaxi case study - AutoX |
3.2.19. | Baidu/Apollo Sensor Suite |
3.2.20. | Aurora Sensor Suite |
3.3. | Semiconductors used for radar |
3.3.1. | Front Radar Applications |
3.3.2. | The Role of Side Radars |
3.3.3. | Radar Anatomy |
3.3.4. | Radar Board Trends |
3.3.5. | The trend towards smaller transistors |
3.3.6. | Transceivers Semiconductor Trends: Power and Noise |
3.3.7. | Transceivers Semiconductor Trends: Power and Noise |
3.3.8. | Transceivers Semiconductor Trends: Virtual Channels |
3.3.9. | SiGe BiCMOS |
3.3.10. | CMOS |
3.3.11. | FD-SOI |
3.3.12. | The Future |
3.3.13. | Timeline |
3.3.14. | Automotive radar trending towards more advanced silicon |
3.4. | Semiconductors in automotive LiDAR |
3.4.1. | LiDARs in automotive applications |
3.4.2. | ADAS/AV sensor operating wavelength |
3.4.3. | Lidar integration positions for ADAS/AV |
3.4.4. | Lidar integration in lamps |
3.4.5. | Lidar integration in the grille |
3.4.6. | Lidar integration on/in the roof |
3.4.7. | Lidars integrated in other positions |
3.4.8. | Possible lidar integration and unit numbers |
3.4.9. | Core aspects of a LiDAR |
3.4.10. | Semiconductors in LiDAR |
3.4.11. | LiDAR trends impacting semiconductor demand |
3.4.12. | Automotive LiDAR semiconductors: Laser drivers |
3.4.13. | Automotive LiDAR semiconductors: Emitters |
3.4.14. | Automotive LiDAR semiconductors: Photodetector |
3.5. | Cameras and thermal cameras for ADAS and autonomous vehicles |
3.5.1. | Vehicle camera applications |
3.5.2. | Components of a CMOS image sensor die |
3.5.3. | Image sensor bare die |
3.5.4. | E-mirrors, an emerging camera application |
3.5.5. | In-cabin monitoring, an autonomous necessity |
3.5.6. | Performance and application trends |
3.5.7. | Performance attribute priorities |
3.5.8. | The importance of HDR in automotive(1) |
3.5.9. | The importance of HDR in automotive (2) |
3.5.10. | The importance of HDR in automotive (3) |
3.5.11. | The importance of HDR in automotive (4) |
3.5.12. | Infrared cameras for automotive applications |
3.5.13. | SWIR for autonomous mobility |
3.5.14. | NIR cameras for automotive applications |
3.6. | Automotive MCUs and chips for high performance computing |
3.6.1. | MCUs, the back-bone of modern vehicles |
3.6.2. | MCU count on vehicles today |
3.6.3. | MCU count on vehicles of the future |
3.6.4. | The zonal compute architecture. |
3.6.5. | Edge MCU case study - NXP S32K |
3.6.6. | Zonal and domain case study - NXP S32S |
3.6.7. | Edge MCU case study - Renesas |
3.6.8. | Domain and zonal MCU case study - Renesas |
3.6.9. | ADAS/AD chip case study - Renesas |
3.6.10. | Domain and zonal MCU case study - STM |
3.6.11. | MCU superchip case study - Nvidia |
3.6.12. | MCU superchip case study - Ambarella |
3.6.13. | MCU analysis |
3.6.14. | High performing computing in automotive (1) |
3.6.15. | High performing computing in automotive (2) |
3.6.16. | Computational efficiency |
3.6.17. | MCU - product table |
3.7. | ADAS and autonomous vehicle supply chains |
3.7.1. | Tier 1 supplier components |
3.7.2. | Tier 2 supplier components (1) |
3.7.3. | Tier 2 supplier components (2) |
3.7.4. | Semiconductor suppliers by ADAS/AD Component |
3.7.5. | VW and Ford In-House Chip Design |
3.7.6. | Stellantis Design Chips with Foxconn |
3.7.7. | Nvidia Autonomous Development Kit |
3.7.8. | Main computer supplier - Nvidia |
3.7.9. | Nvidia Thor - 2,000 TOPs SoC |
3.7.10. | Nvidia - Daimler |
3.7.11. | BMW |
3.7.12. | Main computer supplier - Mobileye |
3.7.13. | Qualcomm |
3.7.14. | Xilinx (AMD brand) |
3.7.15. | Superchips to consolidate MCU market |
3.7.16. | Three tiers of ADAS computation architecture |
3.7.17. | Central computer can reduce complexity |
3.7.18. | A roadmap to towards full car computer architecture |
3.7.19. | Existing level 2/2+ Supply Chain Structure |
3.7.20. | Tesla's Supply Model |
3.7.21. | Toyota's Supply Model |
3.7.22. | Possible Autonomous Supply Model: Nvidia |
3.7.23. | Expect Supply Chain to Consolidate with Increased Automation |
3.7.24. | Autonomous Vertical Integration |
3.7.25. | Robotaxi sensor supply strategy examples |
4. | SEMICONDUCTORS FOR ELECTRIFICATION: ON-BOARD CHARGERS, BATTERY MANAGEMENT SYSTEMS AND INVERTERS |
4.1. | Semiconductors in power electronics: on-board chargers, dc-dc converters and inverters |
4.1.1. | Electric Vehicle Definitions |
4.1.2. | Exponential Growth in Regional EV Markets |
4.1.3. | Hybrid Car Outlook |
4.1.4. | What is Power Electronics? |
4.1.5. | Power Electronics in Electric Vehicles |
4.1.6. | Semiconductor Content Increased |
4.1.7. | Transistor Overview |
4.1.8. | Wide Bandgap (WBG) Semiconductors |
4.1.9. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
4.1.10. | SiC & GaN Have Substantial Room for Improvement |
4.1.11. | SiC MOSFETs Vs GaN HEMTs in EV (1) |
4.1.12. | SiC MOSFETs Vs GaN HEMTs in EV (2) |
4.1.13. | SiC Power Roadmap |
4.1.14. | Traditional EV Inverter Package |
4.1.15. | Discretes & Modules |
4.1.16. | Electric Vehicle Inverter Benchmarking |
4.1.17. | SiC Drives 800V Platforms |
4.1.18. | Power SC Supplier Market Shares |
4.1.19. | SiC Supply Chain in 2023 |
4.1.20. | Inverter Market Share 2020 - 2033: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
4.1.21. | Onboard Charger Circuit Components |
4.1.22. | Tesla Onboard Charger / DC DC converter |
4.1.23. | OBC & DC-DC Converter: Si, SiC, GaN 2020 - 2033 Market Shares |
4.2. | Battery management system |
4.2.1. | Battery management system introduction |
4.2.2. | Block diagram of BMS - NXP |
4.2.3. | Block diagram of BMS - ST Micro |
4.2.4. | Block diagram of BMS - Infineon |
4.2.5. | Block diagram of BMS - generic |
4.2.6. | BMS core hardware |
4.2.7. | Example monitoring and balancing IC |
4.2.8. | Example microcontroller |
4.2.9. | Microcontroller technology |
4.2.10. | MCU - product table |
4.2.11. | Monitoring and balancing IC |
4.2.12. | BMS innovation |
4.2.13. | BMS Component Suppliers |
4.2.14. | Supply chain |
4.2.15. | Shortages |
5. | VEHICLE COMMUNICATION AND INFOTAINMENT: EMERGING FEATURES AND ENABLING HARDWARE |
5.1. | History of connected vehicles. |
5.2. | Emerging connected applications |
5.3. | Android auto and apple car play |
5.4. | Case study - Volkswagen |
5.5. | Case study - BMW (1) |
5.6. | Case study - BMW (2) |
5.7. | The Vehicle-to-Everything vision of vehicle connectivity |
5.8. | Wi-Fi vs Cellular |
5.9. | Spectrum needs for connected vehicles (1) |
5.10. | Spectrum needs for connected vehicles (2) |
5.11. | Spectrum needs for connected vehicles (3) |
5.12. | 4G and 5G C-V2X hardware |
5.13. | DSRC hardware |
5.14. | Screens to facilitate connected features |
5.15. | Infotainment hardware |
6. | EU AND US CHIPS ACTS |
6.1. | EU chips act |
6.1.1. | Motivation |
6.1.2. | Goal |
6.1.3. | The three-pillar framework on which the EU chips act are built |
6.1.4. | Three main elements in the EU chips Act |
6.1.5. | Chips for Europe initiative |
6.1.6. | The "first-of-a-kind" definition |
6.1.7. | Previous attempt |
6.1.8. | EU's strength and weakness in semiconductor |
6.1.9. | Europe's semiconductor assets |
6.1.10. | Time required to expand capacity or build new production line |
6.1.11. | Budget - Overview |
6.1.12. | Budget - how much is confirmed? |
6.1.13. | Budget - confirmed funding for "chips for EU" initiative |
6.1.14. | Germany |
6.1.15. | Spain |
6.1.16. | Italy |
6.1.17. | France |
6.1.18. | Investment information - public company (1) |
6.1.19. | Investment information - public company (2) |
6.1.20. | Investment information - public company (3) |
6.1.21. | Summary - 1 |
6.1.22. | Summary - 2 |
6.2. | US chips act |
6.2.1. | Introduction |
6.2.2. | Key components of the US CHIPS act |
6.2.3. | Smaller components of the US CHIPS act |
6.2.4. | Breakdown of funding |
6.2.5. | Deeper look at CHIPS for America Fund (1) |
6.2.6. | Deeper look at CHIPS for America Fund (2) |
6.2.7. | Key themes from CHIPS for America Fund |
6.2.8. | Chip shortages in the automotive industry |
6.2.9. | CHIPS act potential beneficiaries. |
6.2.10. | CHIPS act to improve automotive shortages |
6.2.11. | US CHIPS act announcements so far - TSMC |
6.2.12. | US CHIPS act announcements so far - Intel |
6.2.13. | US CHIPS act announcements so far - Samsung |
6.2.14. | US CHIPS act announcements so far - GF |
6.2.15. | US CHIPS act announcements so far - Micron |
6.2.16. | Fabs vs the fabless |
6.2.17. | Announcements summary |
6.2.18. | US CHIPS act summary |
7. | FORECASTS |
7.1. | Method |
7.1.1. | Methodology process and report dependencies |
7.1.2. | Forecasting methodology |
7.1.3. | Components covered in this forecast |
7.1.4. | Accompanying database with more than 400 forecast lines |
7.1.5. | Key terminologies used in the forecasts |
7.2. | Addressable markets |
7.2.1. | ADAS and AV market forecast - 2023-2033 |
7.2.2. | Electric automotive market forecast - 2023-2033 |
7.3. | Semiconductor forecast for ADAS and autonomous vehicle applications |
7.3.1. | 300mm silicon wafers forecast for ADAS and AV - 2023-2033 |
7.3.2. | 300mm silicon wafers for ADAS and AV forecast split by application - 2023-2033 |
7.3.3. | 300mm silicon wafers for ADAS and AV sensors forecast - 2023-2033 |
7.3.4. | Non silicon semiconductors for ADAS and AV forecast - 2023-2033 |
7.3.5. | Semiconductor material demand for ADAS and AV applications forecast - 2023-2033 |
7.3.6. | Mineral demand for semiconductor in ADAS and AV applications forecast - 2023-2033 |
7.3.7. | Semiconductor wafer revenue for ADAS and AV applications forecast - 2023-2033 |
7.3.8. | Wafer value per vehicle forecast - 2023-2033 |
7.4. | Semiconductors forecasts for vehicle electrification |
7.4.1. | 300mm semiconductor wafers for electrification forecast - 2023-2033 |
7.4.2. | Raw semiconductor material demand automotive electrification forecast - 2023-2033 |
7.4.3. | Revenue from semiconductor wafers in electrification forecast - 2023-2033 |
7.5. | Automotive semiconductor forecast grand totals |
7.5.1. | Total automotive semiconductor wafer demand forecast - 2023-2033 |
7.5.2. | Total semiconductor wafer forecast for automotive, excluding MCU and other board components |
7.5.3. | Semiconductor mineral demand forecast for automotive - 2023-2033 |
7.5.4. | Semiconductor wafer value per vehicle - 2023-2033 |
7.5.5. | Semiconductor wafer revenue forecast across automotive industry - 2023-2033 |
8. | COMPANY PROFILES |
8.1. | Arbe |
8.2. | Bosch |
8.3. | Continental |
8.4. | EPC |
8.5. | Ford (ADAS) |
8.6. | Ford (electrification) |
8.7. | GaN Systems |
8.8. | General Motors |
8.9. | Henkel |
8.10. | Imec |
8.11. | Infineon |
8.12. | Intel |
8.13. | Mobileye |
8.14. | NXP (5G) |
8.15. | NXP (radar) |
8.16. | On Semi |
8.17. | Qualcomm |
8.18. | Samsung |
8.19. | Stellantis |
8.20. | STMicro |
8.21. | Trieye |
8.22. | TSMC |
8.23. | Uhnder |
8.24. | ZF |