This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

先端半導体パッケージング 2023-2033年

異種統合、AI、高性能コンピューティング(HPC)、データセンター、自動運転車、5G。半導体パッケージング市場の見通し。2.5D IC パッケージング、3D IC パッケージング、アンテナ・イン・パッケージ。


製品情報 概要 目次 価格 Related Content
IDTechEx は最新の市場調査レポート『先端半導体パッケージング 2023-2033年』を発行しました。このレポートは、最新の先端半導体パッケージング技術の開発トレンド、有力企業分析、市場概要を網羅しています。これに加え、このレポートは半導体業界全般に関する徹底した分析を行っています。IDTechEx はデータセンター、自動運転車、5G、消費家電に関する専門知識を駆使して、読者に対し、先端半導体パッケージングがどのようにこうした分野に影響を及ぼし、将来どうなっていくのかの知見を提供します。
「先端半導体パッケージング 2023-2033年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要および結論
● イントロダクション
 Si IC
  • 技術トレンド(現在・将来)
  • 有力企業分析(研究・製造に関するロードマップ)
 半導体パッケージング
  • イントロダクションと技術トレンド
  • モジュールレベル・パッケージング
  • インターコネクト技術
  • ベアダイとパッケージの積層技術
● 各有力企業の先端半導体パッケージング技術検証
  • TSMC
  • Intel
  • ASE(SPIL を含む)
  • サムスン
  • Amkor
  • IMEC
● 先端半導体パッケージング(サプライチェーンと有力企業)
● 異なる市場の先端半導体パッケージング
 高性能コンピューティング(HPC) - データセンター
  • 概要
  • データセンターの先端半導体パッケージング活用事例
 自動運転車
  • 概要
  • ADAS 自動運転プラットフォーム
  • センサーと電源モジュール・パッケージング
 5G
  • 概要
  • 5G インフラの進化
  • 5G mmWave アンテナ・イン・パッケージ(AiP)動向
 消費家電
  • 概要
  • 消費家電の先端半導体パッケージング活用事例
● 見通しのサマリー
 
「先端半導体パッケージング 2023-2033年」は以下の情報を提供します
技術トレンドとメーカー分析
  • Si IC 業界の詳細な概要(技術ロードマップと有力企業関係を含む)
  • 半導体 IC 業界のサプライチェーンとビジネスモデル分析
  • 異なる半導体パッケージング技術分析
  • 主要企業の先端半導体パッケージング技術分析(企業の最新技術や将来の研究開発を含む)
  • 先端半導体パッケージングの主要市場(高性能コンピューティング、自動運転車、5G 、消費家電)
  • 各種用途の先端半導体パッケージング事例検証
10年先市場見通しと分析:
4つの主要調査対象市場(データセンター、自動運転車、5G、消費家電)での、主要先端半導体パッケージング技術(2.5D シリコン組み込み、2.5 シリコンインターポーザ、2.5D(超)高密度ファンアウト、3D ダイスタッキング)の導入実態検証
  • データセンター用サーバー台数見通し 2022-2033年(出荷ベース)
  • データセンター用 CPU: 先端半導体パッケージング個数見通し 2022-2033年(出荷ベース)
  • データセンター・アクセラレータ: 先端半導体パッケージング個数見通し 2022-2033年(出荷ベース)
  • L4+ 自動運転車販売台数見通し 2022-2045年における 2.5D 高度な半導体パッケージング販売個数
  • L4+ 自動運転車見通し 2022-2045年の 3D 高度な半導体パッケージング販売個数
  • スマートフォン/タブレット/スマートウォッチ/AR/VR/MR 2022-2033年を含む消費家電販売台数見通し
  • 消費家電 2022-2033年における APE(アプリケーションプロセッサ環境)向け先端半導体パッケージング個数見通し
  • 世界のパソコン出荷見通し 2022-2033年
  • パソコン見通し 2022-2033年の先端半導体パッケージング個数
  • MIMO サイズ別 5G 無線機台数見通し 2022-2032年
  • 5G RAN ネットワーク 2022-2033年向け先端半導体パッケージング個数
 
Paving the way to the data-centric future
 
If we were to characterize our future in one word, it would be "data-centric".
 
Today, there is an explosion of data at every level and in almost every industry. Every second, our digital world generates 4,000 terabytes of data, and this amount is only expected to go up, if not considerably, in the future.
Data-rich applications such as machine learning and AI are the key data enablers in a wide range of applications including data centers, 5G, autonomous vehicles. To run these apps, a powerful processor is required, of which the foundation is an integrated circuit (IC) built on Si.
 
For decades, IC vendors such as Intel would design a chip that has all functions integrated on the same die, however, as the industry sees the slowdown of Moore's law (the chip densities are no longer doubling every two years), scaling monolithic IC becomes more and more difficult and costly. This pushes IC vendors toward "advanced semiconductor packaging."
 
What is advanced semiconductor packaging?
 
 
Source: Advanced semiconductor packaging 2023-2033
 
Generally speaking, semiconductor packaging is the last two steps of manufacturing a semiconductor device followed by testing. Taking packaging an IC as an example, in the packaging process, the IC bare die is encapsulated in a supporting case with electrical contacts. In this way, the casing protects the IC bare die from physical harm and corrosion and links the IC to a PCB board to other devices. Semiconductor packaging has existed for decades - the first volume production of semiconductor packaging came in the early 1970s. So, what is new?
 
As mentioned, due to the slowdown of Moore's law and significant increases in the cost of manufacturing a monolithic IC, IC vendors required new approaches to designing processors that enable high performance and at the same time remaining cost-effective. A new design, called a "chiplet", is the key trend going forwards.
 
The idea behind chiplets is to "split" a monolithic IC into multiple functional blocks, reconstitute the functional blocks into separate chiplets, and then "re-assemble" these at the package level. Ideally, a processor based on chiplet design should have the same or greater performance but lower total production costs than monolithic IC. Packaging methods, particularly those used to link several chiplets, play a crucial role in chiplet design since they affect the system's performance as a whole. These packaging technologies, including 2.5D IC, 3D IC, and high-density fanout wafer level packaging, are categorised as "advanced semiconductor packaging" and are the subject of our research in this report. They allow for the merging of multiple chiplets at various process nodes on a single substrate and to have small bump sizes to enable higher interconnect densities and higher integration capabilities.
 
What is in this report?
 
This report "Advanced Semiconductor Packaging 2023-2033" includes detailed examination of the latest innovations in advanced semiconductor packaging technology, key technical trends, analysis across the value chain, major player analysis, and granular market forecasts. Furthermore, this study gives a comprehensive evaluation of the semiconductor industry in general.
 
Advanced semiconductor packaging serves as a critical foundation for next generation ICs that will be utilized in four key markets: data centers, 5G, autonomous vehicles, and consumer electronics. IDTechEx leverages its expertise in these sectors to provide the reader with a thorough understanding of how advanced semiconductor packaging is influencing these fields and what the future may hold.
 
Below we list key aspects of this report:
 
Technology trends & manufacturer analysis
 
  • Detailed overview of Si IC industry - including technology roadmap and player dynamics
  • Analysis of supply chain and business model in the semiconductor IC industry
  • Analysis of different semiconductor packaging technologies
  • In-depth analysis of key companies' advanced semiconductor packaging technologies - including the companies' state-of-the-art technology and future research development
  • Detailed overview of key markets for advanced semiconductor packaging. Including high-performance computing, autonomous vehicles, 5G, and consumer electronics
  • Numerous case studies demonstrating the use of advanced semiconductor packaging in a variety of applications.
 
In this report, IDTechEx also examines the market scalability of key advanced semiconductor packaging technologies (including 2.5D embedded Si, 2.5 Si interposer, 2.5D (Ultra) high density fanout, and 3D die stacking) in the four primary markets (Data center, Autonomous vehicles, 5G, Consumer electronics) studied by IDTechEx. This information is translated into 10-year granular market forecasts & analysis.
 
10-year granular market forecasts & analysis
 
  • Data Center Server: unit forecast 2022-2033 (Shipment)
  • Data Center CPU: advanced semiconductor packaging unit forecast 2022-2033 (Shipment)
  • Data Center Accelerator: advanced semiconductor packaging unit forecast 2022-2033 (Shipment)
  • 2.5D advanced semiconductor packaging unit sales for L4+ autonomous vehicles sales forecast 2022-2045
  • 3D advanced semiconductor packaging unit sales for L4+ Autonomous vehicles forecast 2022-2045
  • Unit sales forecast for consumer electronics including smartphones/tablets/smartwatches/AR/VR/MR 2022-2033
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY & CONCLUSIONS
1.1.General electronic packaging - an overview
1.2.Advanced semiconductor packaging - an overview
1.3.Advanced semiconductor packaging technologies - Our scope
1.4.Semiconductor packaging - an overview of technology
1.5.From 1D to 3D semiconductor packaging
1.6.The rise of advanced semiconductor packaging and its challenges
1.7.Four key drivers for advanced semiconductor packaging technologies
1.8.Key figures of merit of advanced semiconductor packaging technologies
1.9.Packaging trend for key markets
1.10.Players in advanced semiconductor packaging and their solutions
1.11.Players in advanced semiconductor packaging by geography
1.12.HPC chip supply chain analysis
1.13.High-end commercial chips based on advanced semiconductor packaging technology (1)
1.14.High-end commercial chips based on advanced semiconductor packaging technology (2)
1.15.Investment in advanced semiconductor packaging by companies
1.16.Semiconductor foundries and their roadmap
1.17.Business value chain in IC industry
1.18.Ecosystem/Business model in the IC industry
1.19.Future packaging trend for chiplet server CPU
1.20.Data Center Server Unit Forecast 2022-2033 (Shipment)
1.21.Total addressable data center CPU market forecast 2022-2033 (Shipment)
1.22.Data center CPU: advanced semiconductor packaging unit forecast 2022-2033 (Shipment)
1.23.Future ADAS/Autonomous driving systems: requirements, actions, and current challenges
1.24.Three transformational pillars in automotive electronics
1.25.L4+ Autonomous vehicles sales forecast 2022-2045
1.26.Total addressable ADAS processor & accelerator sales market for L4+ Autonomous vehicles forecast 2022-2045
1.27.2.5D advanced semiconductor packaging unit sales for L4+ autonomous vehicles sales forecast 2022-2045
1.28.3D advanced semiconductor packaging unit sales for L4+ Autonomous vehicles forecast 2022-2045
1.29.Unit sales forecast for smartphones/tablets/smartwatches/AR/VR/MR 2022-2033
1.30.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (1)
1.31.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (2)
1.32.Global PC shipment forecast 2022-2033
1.33.Advanced semiconductor packaging units in PC forecast 2022-2033 (1)
1.34.Advanced semiconductor packaging units in PC forecast 2022-2033 (2)
1.35.5G radios by MIMO size unit forecast 2022-2032 (Cumulative)
1.36.Estimating the total addressable market for advanced semiconductor packaging in 5G RAN infrastructure 2022-2032 (Cumulative)
1.37.Advanced semiconductor packaging unit for 5G RAN networks 2022-2032 (Cumulative)
1.38.Summary
1.39.Company profiles
2.INTRODUCTION
2.1.Si IC: technology trend
2.2.Paving the way to the data-centric future
2.3.Fundamentals of abundance data computing system
2.4.Key parameter of growth for processor and memory (1)
2.5.Key parameter of growth for processor and memory (2)
2.6.Memory bandwidth deficit
2.7.Four key area of growth for abundance data computing system
2.8.The economics of scaling
2.9.Scaling technology roadmap overview
2.10.Transistor device development (1)
2.11.Transistor device development (2)
2.12.Key parameters for transistor device scaling
2.13.Evolution of transistor device architectures
2.14.CNTs for transistors
2.15.CNFET research breakthrough (1)
2.16.CNFET research breakthrough (2)
2.17.CNFET case study (1)
2.18.3D SOC
2.19.On-chip memory
2.20.Routes to increase I/O density
2.21.Si IC players analysis - research and manufacturing roadmap
2.22.Roadmap of pioneering companies in Si advanced process node
2.23.The players in Si advanced process node
2.24.TSMC (1)
2.25.TSMC (2)
2.26.TSMC (3)
2.27.TSMC (4)
2.28.Intel (1)
2.29.Intel (2)
2.30.Intel (3)
2.31.Samsung (1)
2.32.Samsung (2)
2.33.Semiconductor foundries and their roadmap
2.34.Advanced semiconductor packaging technologies - introduction and technology trend
2.35.General electronic packaging - an overview
2.36.Advanced semiconductor packaging - an overview
2.37.Semiconductor packaging - an overview of technology
2.38.From 1D to 3D semiconductor packaging
2.39.The rise of advanced semiconductor packaging and its challenges
2.40.Four key drivers for advanced semiconductor packaging technologies
2.41.Key figures of merit of advanced semiconductor packaging technologies
2.42.Packaging trend for key markets
2.43.Advanced semiconductor packaging technologies - our scope
2.44.Business value chain in IC industry
2.45.Ecosystem/Business model in the IC industry
2.46.Role and advantages of players in advanced semiconductor packaging market
2.47.Heterogeneous integration solutions
2.48.Heterogeneous integration solutions
2.49.System on Chip (SOC)
2.50.System on Chip (SOC) (2)
2.51.Multi-Chip Module (MCM)
2.52.System in Package (SIP)
2.53.System on Package (SOP)
2.54.Comparison between SIP and SOP
2.55.PCB-Embedding Technology
2.56.PCB Embedding Technology - Active Chips
2.57.PCB Embedding Technology - Active Chips (continued)
2.58.PCB Embedding Technology - Cases
2.59.PCB Embedding Technology - Cases (continued)
2.60.Chip Embedding Technologies (CET) - Integrated Passive Device
2.61.Packaging technologies by interconnect technique
2.62.Interconnection technique
2.63.Interconnection technique - Wire Bond
2.64.Interconnection technique - Flip Chip
2.65.Interconnection technique - Wafer level packaging
2.66.Fan-out process flow
2.67.Interconnection technique - Interposer
2.68.Interposer Structure
2.69.Passive vs Active Interposer
2.70.Interposer alternative - Bridge
2.71.Interconnection technique - Technology benchmark
2.72.Die/Package stacking technologies
2.73.Die/Package stacking technologies - an overview
2.74.Package in Package (PIP) vs Package on Package (POP)
2.75.Die stacking
2.76.Differences between stacked packages and stacked dies
2.77.2.5D and 3D IC Packaging
2.78.2.5D IC Packaging
2.79.3D IC Packaging technology
2.80.3D IC Packaging
3.TECHNOLOGICAL DEEP DIVE INTO ADVANCED SEMICONDUCTOR PACKAGING TECHNOLOGIES FROM VARIOUS PLAYERS
3.1.Overview
3.1.1.Players in advanced semiconductor packaging and their solutions
3.2.TSMC's advanced semiconductor packaging solutions
3.2.1.TSMC 3DFabricTM packaging technologies overview
3.2.2.TSMC 2.5D packaging technology - CoWoS
3.2.3.TSMC 2.5D packaging technology - InFO
3.2.4.TSMC INFO technology - process flow
3.2.5.TSMC 2.5D packaging technology applications
3.2.6.TSMC 2.5D packaging technologies roadmap
3.2.7.TSMC 3D SoIC Technology
3.2.8.TSMC 3D SoIC development roadmap
3.2.9.Why scaling bump/bond pitch size is important?
3.2.10.Process of "bumpless" bonding - Cu bonding technologies
3.2.11.How bonding pitch size affects system performance
3.2.12.Roadmap of bond pitch scaling
3.2.13.Future high band width memory using SoIC technology
3.2.14.Thermal management for SoIC
3.2.15.Technology benchmark between 2.5D, 3D-IC, and SoIC
3.2.16.Combine 3D SoIC and 2.5D backend packaging technologies
3.2.17.N3XT Solution: 3D Monolithic integration
3.2.18.TSMC considers Packaging Facility in the US
3.2.19.Intel's advanced semiconductor packaging solutions
3.2.20.Intel advanced IC packaging profile
3.2.21.Intel Packaging technology roadmap
3.2.22.Intel EMIB (Embedded Multi-Die interconnect Bridge)
3.2.23.Products that use EMIB technology
3.2.24.EMIB Process flow
3.2.25.EMIB - power distribution path
3.2.26.EMIB key parameters
3.2.27.EMIB roadmap - bump size reduction
3.2.28.Intel Ponte Vecchio package teardown
3.2.29.Intel 3D Foveros
3.2.30.Intel 3D Foveros roadmap
3.2.31.Intel 3D Foveros ODI
3.2.32.Intel 3D Foveros Direct
3.2.33.Three key interconnect breakthrough from Intel
3.2.34.Intel interconnect technology - hybrid bonding
3.2.35.Intel interconnect technology - Zero Misaligned Via (ZMV)
3.2.36.Intel 3D packaging roadmap: Co-EMIB (2.5D+3D)
3.2.37.Intel Lakefield advanced semiconductor packaging
3.2.38.Intel's products that are/will be using 3D Foveros
3.3.SPIL's advanced semiconductor packaging solutions
3.3.1.SPIL Fan-Out Embedded Bridge (FOEB) Technology
3.3.2.SPIL FOEB Technology process flow
3.3.3.SPIL FOEB - Thermal and Warpage
3.3.4.SPIL FOEB vs 2.5D
3.3.5.SPIL FOEB vs Intel EMIB
3.4.Samsung's advanced semiconductor packaging solutions
3.4.1.Samsung advanced IC packaging profile
3.4.2.Samsung's advanced semiconductor packaging solutions
3.4.3.Samsung's technology roadmap for HPC
3.4.4.Samsung's advanced semiconductor packaging solutions for HPC
3.4.5.Samsung's X-Cube and I-Cube4 packaging schematic
3.4.6.Samsung RDL-first fan-out wafer level package (FOWLP) process flow
3.4.7.Samsung next generation high bandwidth memory: HBM3
3.4.8.Samsung H-Cube advanced semiconductor packaging technology
3.5.Amkor's advanced semiconductor packaging solutions
3.5.1.Overview
3.5.2.Amkor's 2.5D TSV FCBGA
3.5.3.Summary of Amkor's 2.5D TSV technologies
3.5.4.Stacked substrate (2.5D packaging) from Amkor
3.5.5.High-Density Fan-Out (HDFO) solution from Amkor
3.5.6.Amkor's S-SWIFT packaging solution (1)
3.5.7.Amkor's S-SWIFT packaging solution (2)
3.5.8.Amkor - RDL layers development
3.5.9.Electrical characteristics vs different RDL solution
3.5.10.Amkor's S-SWIFT package development status
3.5.11.Amkor - 3D stacking
3.5.12.Amkor - Cu-Cu Hybrid bonding pathfinding on the way
3.6.ASE's advanced semiconductor packaging solutions
3.6.1.ASE 2.5D technologies - FOCoS
3.6.2.ASE FOCoS process flow (1)
3.6.3.ASE FOCoS process flow (2)
3.6.4.Pros and Cons of FOCoS chip last
3.6.5.ASE FOCoS chip last package characteristic
3.7.IMEC advanced semiconductor packaging solution
3.7.1.Imec's Flip Chip on FOWLP
3.7.2.Flip Chip on FOWLP - Process flow
3.7.3.Flip Chip on FOWLP - challenges
3.7.4.3D Integration technology landscape
4.ADVANCED SEMICONDUCTOR PACKAGING - SUPPLY CHAIN AND PLAYERS
4.1.Overview
4.1.1.Players in advanced semiconductor packaging by geography
4.1.2.HPC chip supply chain analysis
4.1.3.Investment in advanced semiconductor packaging by companies
4.2.Chiplet
4.2.1.What is chiplet technology
4.2.2.Why chiplet technology
4.2.3.Benefits of chiplet
4.2.4.AMD Chiplet performance vs cost
4.2.5.Chiplet integration - use cases
5.ADVANCED SEMICONDUCTOR PACKAGING FOR DIFFERENT MARKETS
5.1.High-performance computing (HPC)
5.1.1.Introduction to Data Center Equipment: Servers, Switches and Supervisors
5.1.2.Server Board Layout (1)
5.1.3.Server board Layout (2)
5.1.4.Determining the Relative Numbers of Data Center Equipment
5.1.5.Data Center Switch Players
5.1.6.Average Switch Port Numbers
5.1.7.Examples of switch architecture
5.1.8.Data Center Server Unit Forecast 2022-2033 (Shipment)
5.1.9.Total addressable data center CPU market forecast 2022-2033 (Shipment)
5.1.10.Total addressable data center accelerator market forecast 2022-2033 (Shipment)
5.2.Semiconductor packaging for CPUs in data center servers and switches
5.2.1.Intel vs AMD for Server CPUs
5.2.2.Advanced semiconductor packaging for Intel latest Xeon server CPU (1)
5.2.3.Advanced semiconductor packaging for Intel latest Xeon server CPU (2)
5.2.4.AMD chip semiconductor packaging roadmap
5.2.5.Options for Integrating Multiple Chips
5.2.6.AMD's semiconductor packaging choices for chiplet integration
5.2.7.AMD Stacked 3D V-Cache technology for server CPU (1)
5.2.8.AMD Stacked 3D V-Cache technology for server CPU (2)
5.2.9.Future packaging trend for chiplet server CPU
5.2.10.Data center CPU: advanced semiconductor packaging unit forecast 2022-2033 (Shipment)
5.3.Semiconductor packaging for accelerators in data center servers and switches
5.3.1.Accelerators in servers
5.3.2.Server board layout - with accelerators (1)
5.3.3.Server board layout - with accelerators (2)
5.4.GPUs as data center accelerators
5.4.1.Computer memory hierarchy
5.4.2.HBM vs DDR for computing (1)
5.4.3.Drawbacks of High Bandwidth Memory (HBM)
5.4.4.Summary of HBM vs DDR
5.4.5.HBM vs DDR for computing - market trend
5.4.6.Approaches to package HBM and GPU
5.4.7.AMD new server GPU featuring new semiconductor packaging approach
5.4.8.AMD Elevated fanout bridge 2.5D
5.4.9.AMD patents GPU chiplet design for future graphics cards
5.4.10.AMD GPU memory choice for different applications
5.4.11.NVIDIA GPU for data centers
5.4.12.Computing modules with HBM (1)
5.4.13.Computing modules with HBM (2)
5.4.14.Intel Ponte Vecchio packaging insights
5.5.FPGA as data center accelerators
5.5.1.Server board layout - with FPGA accelerators
5.5.2.Intel FPGA packaging
5.5.3.Xilinx FPGA packaging
5.5.4.High-end commercial chips based on advanced semiconductor packaging technology (1)
5.5.5.High-end commercial chips based on advanced semiconductor packaging technology (2)
5.5.6.Summary
5.5.7.Logic-memory moving from 2D to 3D packaging
5.5.8.Data center accelerator: advanced semiconductor packaging unit forecast 2022-2033 (shipment)
5.6.Advanced semiconductor packaging in automotive
5.6.1.Future ADAS/Autonomous driving systems: requirements, actions, and current challenges
5.6.2.Three transformational pillars in automotive electronics
5.7.Autonomous vehicles (AVs) - an overview
5.7.1.Why Automate Cars?
5.7.2.The Automation Levels in Detail
5.7.3.Functions of Autonomous Driving at Different Levels
5.7.4.The European Commission's Roadmap to Autonomy
5.7.5.Autonomous Vehicle = Electric Vehicle?
5.7.6.Typical Sensor Suite for Autonomous Cars
5.7.7.What is Sensor Fusion?
5.7.8.Evolution of Sensor Suite from Level 1 to Level 4
5.7.9.The Coming Flood of Data in Autonomous Vehicles
5.7.10.High demand for computing power in autonomous vehicles
5.7.11.Semiconductor Content Increase in AVs
5.7.12.Semiconductor Content Increase in EVs
5.7.13.Horizon Robotics: the Chinese Embedded AI Chip Unicorn
5.8.Autonomous driving platform - processors and chip packaging
5.8.1.The primary differentiators for AVs will be chip design and software
5.8.2.Autonomous driving platform - processors and packaging roadmap (1)
5.8.3.Autonomous driving platform - processors and packaging roadmap (2)
5.8.4.Chip design and packaging choice for AV computing processers from different suppliers
5.8.5.NVIDIA's AV computing modules for L5 automotive
5.8.6.Self-driving computing module packaging challenges
5.8.7.L4+ Autonomous vehicles sales forecast 2022-2045
5.8.8.Total addressable ADAS processor & accelerator sales market for L4+ Autonomous vehicles forecast 2022-2045
5.8.9.2.5D advanced semiconductor packaging unit sales for L4+ autonomous vehicles sales forecast 2022-2045
5.8.10.3D advanced semiconductor packaging unit sales for L4+ Autonomous vehicles forecast 2022-2045
5.9.Transformation of AV chip supply chain
5.9.1.VW and Ford In-House Chip Design
5.9.2.Stellantis Design Chips with Foxconn
5.9.3.Nvidia Autonomous Development Kit
5.9.4.Nvidia - Daimler
5.9.5.BMW
5.9.6.Qualcomm
5.9.7.Xilinx (AMD brand)
5.9.8.Summary of Some Current Supply Relationships
5.9.9.Future Chip Supply Summarised
5.9.10.Autonomous Vertical Integration
5.9.11.Expect Supply Chain to Consolidate with Increased Automation
5.10.Autonomous - packaging for sensors and power modules
5.10.1.Autonomous - packaging for sensors and power modules
5.10.2.Packaging for sensors in ADAS (1)
5.10.3.Packaging for sensors in ADAS(2)
5.10.4.Radar IC Packages
5.11.EV - power module packaging
5.11.1.Power Module Packaging Over the Generations
5.12.Package Materials & Innovations
5.12.1.Traditional Power Module Packaging
5.12.2.Module Packaging Material Dimensions
5.12.3.Advanced Wirebonding Techniques
5.12.4.Technology Evolution Beyond Al Wire Bonding
5.13.Substrates
5.13.1.The Choice of Ceramic Substrate Technology
5.13.2.AlN: Overcoming its Mechanical Weakness
5.14.Approaches to Substrate Metallisation
5.14.1.Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation
5.14.2.Direct Plated Copper (DPC): Pros and Cons
5.14.3.Double Bonded Copper (DBC): Pros and Cons
5.14.4.Active Metal Brazing (AMB): Pros and Cons
5.14.5.Ceramics: CTE Mismatch
5.15.Introduction to 5G
5.15.1.Evolution of mobile communications
5.15.2.Global snapshot of allocated/targeted 5G spectrum
5.15.3.5G network deployment strategy
5.15.4.Two types of 5G: sub-6 GHz and mmWave
5.15.5.Low, mid-band 5G is often the operator's first choice to provide 5G national coverage
5.15.6.5G commercial/pre-commercial services by frequency
5.16.5G infrastructure
5.16.1.From 1G to 5G: the evolution of cellular network infrastructure
5.16.2.Different RAN architectures
5.16.3.Why splitting the baseband unit (BBU) is necessary in 5G
5.16.4.High and Low layer split of the 5G network
5.16.5.More functional splits to support diverse 5G use cases
5.16.6.Evolution of Open RAN functional split
5.16.7.Samsung's VRAN solution
5.16.8.Ericsson's cloud RAN solution
5.16.9.Open RAN deployment based on commercial off-the-shelf (COTS) hardware
5.16.10.Ultra low latency networks require accelerator card
5.16.11.Open RAN infrastructure arrangement
5.16.12.5G radio design trend
5.16.13.Trends in 5G antennas: active antennas and massive MIMO
5.16.14.Massive MIMO (mMIMO)
5.16.15.Antenna array architectures for beamforming
5.16.16.Software defined radio (SDR)
5.16.17.Block diagram of MIMO antenna array system
5.16.18.Integration of digital frontend with transceivers
5.16.19.Si design for Open RAN radio (Analog Devices case)
5.16.20.Marvell baseband Si for 5G Open RAN radio
5.16.21.Marvell SoC for 5G networks (2)
5.16.22.Xilinx's Si solution for 5G radio unit (1)
5.16.23.Xilinx's Si solution for 5G radio unit (2)
5.16.24.End-to-End 5G Silicon Solutions from Intel
5.16.25.Intel's FPGA for 5G radio (1)
5.16.26.Intel's FPGA for 5G radio (2)
5.16.27.The intentions of 5G system vendors enter Si battleground (1)
5.16.28.The intentions of 5G system vendors enter Si battleground (2)
5.16.29.Key chipset players involved in the telecom infrastructure
5.16.30.5G base station types: macro cells and small cells
5.16.31.5G radios by MIMO size unit forecast 2022-2032 (Cumulative)
5.16.32.Estimating the total addressable market for advanced semiconductor packaging in 5G RAN infrastructure 2022-2032 (Cumulative)
5.16.33.Advanced semiconductor packaging unit for 5G RAN networks 2022-2032 (Cumulative)
5.17.5G mmWave Antenna in Package (AiP)
5.17.1.Overview of challenges, trends and innovations for mmWave 5G devices
5.17.2.High frequency integration and packaging trend
5.17.3.Example: Qualcomm mmWave antenna module
5.17.4.High frequency integration and packaging: Requirement and Challenges
5.17.5.Three ways of mmWave antenna integration
5.17.6.Technology benchmark of antenna packaging technologies
5.17.7.AiP development trend
5.17.8.Two types of AiP structures
5.17.9.Two types of IC-embedded technology
5.17.10.University of Technology, Sydney: AME antennas in packages for 5G wireless devices
5.17.11.Additively manufactured antenna-in-package
5.17.12.Low loss materials is key for 5G mmWave AiP
5.17.13.Low loss materials for AiP: Five important metrics that impact the materials selection
5.17.14.Overview of low-loss materials for AiP
5.17.15.Choices of low-loss materials for 5G mmWave AiP
5.17.16.Key low loss materials suppliers landscape
5.17.17.Benchmark of commercialised low-loss organic laminates
5.17.18.Organic materials are still the mainstream choice for substrates in AiP
5.17.19.Benchmark of low loss materials for AiP
5.17.20.5G AiP Summary
5.18.Advanced semiconductor packaging technologies for consumer electronics
5.18.1.Introduction
5.18.2.TSMC's HD fanout solutions for consumer electronics
5.18.3.Samsung's new galaxy smartwatch
5.18.4.Packaging choices for packaging application processor environment (APE) in consumer electronics (1)
5.18.5.Packaging choices for packaging application processor environment (APE) in consumer electronics (2)
5.18.6.3D packaging for APE in consumer electronics
5.18.7.Future packaging trend for APE in consumer electronics
5.18.8.Unit sales forecast for smartphones/tablets/smartwatches/AR/VR/MR 2022-2033
5.18.9.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (1)
5.18.10.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (2)
5.18.11.Advanced semiconductor packaging unit forecast for APE in consumer electronics remarks
5.18.12.Apple's M1 ultra for workstations uses TSMC's fan-out technologies
5.18.13.AMD Stacked 3D V-Cache technology for consumer desktop CPU
5.18.14.Intel mobile SoC for laptops (Lakefield) advanced semiconductor packaging
5.18.15.Advanced semiconductor packaging in Intel's next generation CPU Meteor Lake
5.18.16.Global PC shipment forecast 2022-2033
5.18.17.Advanced semiconductor packaging units in PC forecast 2022-2033 (1)
5.18.18.Advanced semiconductor packaging units in PC forecast 2022-2033 (2)
6.FORECAST SUMMARY
6.1.Data Center Server Unit Forecast 2022-2033 (Shipment)
6.2.Total addressable data center CPU market forecast 2022-2033 (Shipment)
6.3.Data center CPU: advanced semiconductor packaging unit forecast 2022-2033 (Shipment)
6.4.Total addressable data center accelerator market forecast 2022-2033 (Shipment)
6.5.Data center accelerator: advanced semiconductor packaging unit forecast 2022-2033 (shipment)
6.6.Future ADAS/Autonomous driving systems: requirements, actions, and current challenges
6.7.Three transformational pillars in automotive electronics
6.8.L4+ Autonomous vehicles sales forecast 2022-2045
6.9.Total addressable ADAS processor & accelerator sales market for L4+ Autonomous vehicles forecast 2022-2045
6.10.2.5D advanced semiconductor packaging unit sales for L4+ autonomous vehicles sales forecast 2022-2045
6.11.3D advanced semiconductor packaging unit sales for L4+ Autonomous vehicles forecast 2022-2045
6.12.Unit sales forecast for smartphones/tablets/smartwatches/AR/VR/MR 2022-2033
6.13.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (1)
6.14.Advanced semiconductor packaging unit forecast for APE (Application processor environment) in consumer electronics 2022-2033 (2)
6.15.Global PC shipment forecast 2022-2033
6.16.Advanced semiconductor packaging units in PC forecast 2022-2033 (1)
6.17.Advanced semiconductor packaging units in PC forecast 2022-2033 (2)
6.18.5G radios by MIMO size unit forecast 2022-2032 (Cumulative)
6.19.Estimating the total addressable market for advanced semiconductor packaging in 5G RAN infrastructure 2022-2032 (Cumulative)
6.20.Advanced semiconductor packaging unit for 5G RAN networks 2022-2032 (Cumulative)
 

レポート概要

スライド 444
フォーキャスト 2033
ISBN 9781915514097
 
 
 
 

Subscription Enquiry