1. | EXECUTIVE SUMMARY |
1.1. | Types of lithium battery |
1.2. | Fast-charging battery developments |
1.3. | Value proposition of high silicon content anodes |
1.4. | Silicon anodes - critical comparison |
1.5. | Silicon anode start-ups - funding |
1.6. | Material opportunities from silicon anodes |
1.7. | Company benchmark comparison |
1.8. | Silicon anode value chain |
1.9. | Li-ion battery cell structure - Li-metal |
1.10. | Li-metal battery developers |
1.11. | Improvements to cell energy density and specific energy |
1.12. | Timeline and outlook for Li-ion energy densities |
1.13. | Li-ion timeline commentary |
1.14. | Lithium-sulphur batteries - advantages |
1.15. | Lithium-sulphur companies |
1.16. | Li-S cost comparisons |
1.17. | Value proposition of Li-S batteries |
1.18. | What markets exist for lithium sulphur batteries? |
1.19. | Na-ion companies compared |
1.20. | Na-ion performance compared |
1.21. | Appraisal of Na-ion |
1.22. | Value proposition of Na-ion batteries |
1.23. | Introduction to Redox Flow Batteries |
1.24. | RFB market share by chemistry |
1.25. | Zn-based batteries - introduction |
1.26. | Rechargeable zinc battery companies |
1.27. | Commercialisation timeline examples |
1.28. | Battery technologies - start-up activity |
1.29. | Battery technologies - regional start-up of activity |
1.30. | Battery technologies - level of regional activity |
1.31. | Battery technology start-ups - regional activity |
1.32. | Regional efforts |
1.33. | Regional efforts |
1.34. | Battery technology comparison |
1.35. | Li-ion technology diversification |
1.36. | Addressable Li-ion markets (GWh) |
1.37. | Total advanced anode market |
1.38. | Company developments in H1 2021 |
1.39. | Readiness level snapshot |
2. | INTRODUCTION |
2.1. | Battery chemistries |
2.2. | Lithium battery chemistries |
2.3. | Importance of energy storage |
2.4. | Electric vehicles needed |
2.5. | Why are Li-ion battery advancements needed? |
2.6. | Why are alternative battery chemistries needed? |
2.7. | Where will performance improvements come from? |
2.8. | Electrochemistry definitions |
2.9. | Useful charts for performance comparison |
2.10. | Ragone plots |
3. | ADVANCED LITHIUM BATTERIES |
3.1.1. | Defining the scope of advanced Li-ion batteries |
3.1.2. | What is a Li-ion battery? |
3.1.3. | More than one type of Li-ion battery |
3.1.4. | Li-ion cathode materials - LCO and LFP |
3.1.5. | Li-ion cathode materials - NMC, NCA and LMO |
3.1.6. | Li-ion anode materials - graphite and LTO |
3.1.7. | Li-ion anode materials - silicon and lithium metal |
3.1.8. | Li-ion electrolytes |
3.2. | Silicon anodes |
3.2.1. | Definitions |
3.2.2. | The promise of silicon |
3.2.3. | Value proposition of high silicon content anodes |
3.2.4. | The reality of silicon |
3.2.5. | Alloy anode materials |
3.2.6. | Comparing silicon - a high-level overview |
3.2.7. | Solutions for silicon incorporation |
3.2.8. | Manufacturing silicon anode material |
3.2.9. | How much can silicon improve energy density? |
3.2.10. | Cost reductions from silicon |
3.2.11. | Current silicon use |
3.2.12. | Silicon use in EVs |
3.2.13. | Silicon and LFP |
3.2.14. | Impact of silicon in an LFP cell |
3.2.15. | Will silicon content increase steadily? |
3.2.16. | Silicon anode start-ups |
3.2.17. | Start-ups developing silicon anode solutions |
3.2.18. | Regional Si-anode activity |
3.2.19. | Upstream interest in silicon |
3.2.20. | Commercial technology directions |
3.2.21. | Notable players for silicon EV battery technology |
3.2.22. | Solid-state and silicon timeline |
3.2.23. | Development timelines |
3.2.24. | Silicon commercialisation timelines |
3.2.25. | Prototype and targeted improvements from silicon |
3.2.26. | Money in silicon anode start-ups |
3.2.27. | Silicon anode start-ups - funding |
3.2.28. | Si-anode start-up patents |
3.2.29. | Established company interest in silicon |
3.2.30. | Silicon anode material - Wacker Chemie |
3.2.31. | Samsung's silicon-graphene ball anode |
3.2.32. | Panasonic-Tesla |
3.2.33. | Silicon in consumer devices |
3.2.34. | Top 3 Si-anode patent assignees |
3.2.35. | Top 3 patent assignee Si-anode technology comparison |
3.2.36. | Silicon anode value chain |
3.2.37. | Silicon anode value chain investments and partnerships |
3.2.38. | Changes in manufacturing |
3.2.39. | Material opportunities from silicon anodes |
3.2.40. | Applications for Si-anodes |
3.2.41. | Silicon and solid-state |
3.2.42. | Silicon anode technology development overview |
3.2.43. | Barriers to high silicon utilisation |
3.2.44. | Market for silicon anodes |
3.2.45. | Silicon anode company profiles |
3.2.46. | Comparing silicon anode solutions and companies |
3.2.47. | Advano - overview |
3.2.48. | Advano patents |
3.2.49. | Amprius - overview |
3.2.50. | Amprius - technology and performance |
3.2.51. | Amprius - patents |
3.2.52. | E-magy - background |
3.2.53. | E-magy technology |
3.2.54. | Enevate - overview |
3.2.55. | Enevate Technology |
3.2.56. | Enevate patents |
3.2.57. | Enovix overview |
3.2.58. | Enovix technology |
3.2.59. | Eocell |
3.2.60. | Group14 Technologies - overview |
3.2.61. | Group 14 - technology and performance |
3.2.62. | Group14 Technologies - patents |
3.2.63. | Nanograf - overview |
3.2.64. | Nanograf performance |
3.2.65. | Nanograf - patents |
3.2.66. | Nexeon - overview |
3.2.67. | Nexeon - patents |
3.2.68. | One D Battery Sciences |
3.2.69. | One D - technology |
3.2.70. | Sila Nano - overview |
3.2.71. | Sila Nano - technology and patents |
3.2.72. | Storedot - overview |
3.2.73. | Storedot patents |
3.2.74. | Storedot - patents |
3.2.75. | NEO Battery Materials anode performance |
3.2.76. | Talga Resources |
3.2.77. | Silicon anodes - critical comparison |
3.2.78. | Company benchmark comparison |
3.2.79. | Approaches to silicon rich anodes |
3.2.80. | Concluding remarks |
3.3. | Lithium-metal and solid-state |
3.3.1. | Lithium-metal anodes |
3.3.2. | Li-ion battery cell structure - Li-metal |
3.3.3. | Difficulty of Li-metal anodes |
3.3.4. | Enabling Li-metal without solid-electrolytes |
3.3.5. | Energy density of lithium-metal anode designs |
3.3.6. | Anode-less cell design |
3.3.7. | Anode-less lithium-metal cells |
3.3.8. | Anode-less lithium-metal cell developers |
3.3.9. | SES |
3.3.10. | SES Technology |
3.3.11. | SES patents |
3.3.12. | Sion Power |
3.3.13. | Sion Power technology |
3.3.14. | Sion Power patents |
3.3.15. | Cuberg |
3.3.16. | Cuberg patents |
3.3.17. | Polyplus |
3.3.18. | Li-metal battery developers |
3.3.19. | Applications for Li-metal |
3.3.20. | Competition for Li-metal |
3.4. | Solid-state batteries |
3.4.1. | What is a solid-state battery (SSB)? |
3.4.2. | Lithium-ion batteries vs. solid-state batteries |
3.4.3. | How can solid-state batteries increase performance? |
3.4.4. | Close stacking |
3.4.5. | Energy density improvement |
3.4.6. | Value propositions and limitations of solid state battery |
3.4.7. | Flexibility and customisation provided by solid-state batteries |
3.4.8. | Solid-state battery literature analysis |
3.4.9. | How to design a good solid-state electrolyte |
3.4.10. | Solid-state electrolyte technology approach |
3.4.11. | Classifications of solid-state electrolyte |
3.4.12. | Summary of solid-state electrolyte technology |
3.4.13. | Technology evaluation |
3.4.14. | Companies working on polymer solid state batteries |
3.4.15. | Companies working on oxide solid state batteries |
3.4.16. | Companies working on sulphide solid state batteries |
3.4.17. | Concluding remarks on solid-state batteries |
3.5. | Lithium titanates and niobates |
3.5.1. | Introduction to lithium titanate oxide (LTO) |
3.5.2. | Where will LTO play a role? |
3.5.3. | Comparing LTO and graphite |
3.5.4. | Commercial LTO comparisons |
3.5.5. | Toshiba |
3.5.6. | Microvast |
3.5.7. | Altairnano / Yinlong |
3.5.8. | Leclanche |
3.5.9. | Forsee Power |
3.5.10. | XALT Energy |
3.5.11. | Battery pack manufacturers using LTO |
3.5.12. | Lithium titanate to niobium titanium oxide |
3.5.13. | Niobium based anodes - Echion Technologies |
3.5.14. | Niobium based anodes - Nyobolt |
3.5.15. | Niobium tungsten oxide |
3.5.16. | Vanadium oxide anodes |
3.5.17. | Concluding remarks on LTO, niobium and vanadium based anodes |
3.6. | Advanced Li-ion cathodes |
3.6.1. | Cathode materials - LCO and LFP |
3.6.2. | Cathode materials - NMC, NCA and LMO |
3.6.3. | Cathode recap |
3.6.4. | Cathode powder synthesis (NMC) |
3.6.5. | Cathode developments |
3.6.6. | Moving to high-nickel layered oxides |
3.6.7. | NCMA cathode |
3.6.8. | General Motors Ultium platform |
3.6.9. | High-Ni cathode roadmaps |
3.6.10. | NMA cathode |
3.6.11. | Beyond metal percentages |
3.6.12. | Cost reduction from cell chemistry |
3.6.13. | High manganese cathodes - LMO, LMR-NMC |
3.6.14. | High manganese cathodes - LMP, LMFP |
3.6.15. | High-voltage LNMO |
3.6.16. | Haldor Topsoe's LNMO |
3.6.17. | Developments for high-voltage LNMO |
3.6.18. | LMFP cathodes |
3.6.19. | LMFP development |
3.6.20. | High-level performance comparison |
3.6.21. | Material intensity of NMC, Li-Mn-rich, LNMO |
3.6.22. | Potential cost reduction from high manganese content |
3.6.23. | New cathode synthesis methods - 6K Energy |
3.6.24. | 6K Energy - technology |
3.6.25. | New cathode synthesis method - Nano One |
3.6.26. | Nano One process |
3.6.27. | Nano One - cathode performance |
3.6.28. | Li-Mn-rich cathodes |
3.6.29. | Li and Mn rich - Samsung |
3.6.30. | Zenlabs Li- and Mn-rich |
3.6.31. | Stabilising high-nickel NMC |
3.6.32. | Cathode coating technology - CamX Power |
3.6.33. | Protective coatings |
3.6.34. | Protective coatings - companies |
3.6.35. | Cathode materials |
3.6.36. | Cathode development overview |
3.6.37. | Concluding remarks |
3.7. | Layered oxide (NMC, NCA) cathode patent development |
3.7.1. | Top 10 NMC/NCA patent assignees |
3.7.2. | Player rank by number of active and pending patents |
3.7.3. | Top 3 NMC assignee's main IPC comparison |
3.7.4. | Top 3 assignee technology comparison |
3.7.5. | High nickel cathode synthesis |
3.7.6. | Low cobalt NCA - SMM |
3.7.7. | High nickel cathode stabilisation |
3.7.8. | Single crystal NCA cathode |
3.7.9. | EcoPro high-Ni concentration gradient synthesis |
3.7.10. | Cathode concentration gradient |
3.7.11. | Ternary cathode patent overview |
3.8. | Inactive materials and cell design |
3.8.1. | Carbon nanotubes in Li-ion |
3.8.2. | Impact of CNT use in Li-ion electrodes |
3.8.3. | Nanocarbon electrode structure - Nanoramic |
3.8.4. | Thick format electrodes |
3.8.5. | Thick format electrodes - 24m |
3.8.6. | Dual electrolyte Li-ion |
3.8.7. | Thick format electrodes - using CNTs |
3.8.8. | Graphene coatings for Li-ion |
3.8.9. | Current collectors |
3.8.10. | 3D current collector - Addionics |
3.8.11. | Plastic current collectors |
3.8.12. | Soteria business model and value proposition |
3.8.13. | Multi-layer electrodes - EnPower |
3.8.14. | Impact of multi-layer electrode design |
3.8.15. | Benefits of dry electrode manufacturing |
3.8.16. | Dry electrode manufacturing and binderless electrodes |
3.8.17. | 4680 tabless cell |
3.8.18. | Increasing cell sizes |
3.8.19. | Bipolar cell design |
3.8.20. | Bipolar design - Prologium |
3.8.21. | Cell design options |
4. | LI-ION ENERGY DENSITY AND TECHNOLOGY TIMELINE |
4.1. | Academic figures on energy density improvement |
4.2. | Increasing BEV battery cell energy density |
4.3. | Increasing EV battery cell specific energy |
4.4. | Extrapolating improvements to energy density and specific energy |
4.5. | Improvements to cell energy density and specific energy |
4.6. | Cell energy density and specific energy - data |
4.7. | Prototype and targeted improvements to cell energy density and specific energy - data |
4.8. | Commentary on improving cell energy densities |
4.9. | IDTechEx calculations |
4.10. | IDTechEx energy density calculations - by cathode |
4.11. | Energy density improvements from silicon |
4.12. | Next generation cathodes |
4.13. | Cell design to increase energy densities |
4.14. | How high can you go with 'conventional' electrodes? |
4.15. | How high can you go with next gen materials? |
4.16. | How high can you go with next gen materials? |
4.17. | Discussion of outlook for Li-ion energy density improvement |
4.18. | Timeline and outlook for Li-ion energy densities |
4.19. | Li-ion timeline commentary |
5. | LITHIUM-SULPHUR |
5.1. | Lithium-sulphur batteries - introduction |
5.2. | Operating principle of Li-S |
5.3. | Lithium-sulphur batteries - advantages |
5.4. | Li-S advantages and use cases |
5.5. | Challenges with lithium-sulphur |
5.6. | Polysulphide dissolution |
5.7. | Li-S challenges - poor sulphur utilisation and excess electrolyte |
5.8. | Energy densities comparison |
5.9. | Energy densities comparison |
5.10. | Engineering challenges to commercial Li-S |
5.11. | Solutions to Li-S challenges |
5.12. | Lithium-sulphur commercialisation - recent developments |
5.13. | Oxis Energy - case study |
5.14. | Oxis Energy - battery performance |
5.15. | Oxis Energy - case study analysis |
5.16. | NexTech |
5.17. | NexTech - technology |
5.18. | Graphene Batteries AS |
5.19. | Graphene Batteries AS - performance |
5.20. | Li-S Energy |
5.21. | Li-S Energy - Deakin University |
5.22. | Lyten |
5.23. | LG Chem Li-S IP |
5.24. | Use of platinum group metals |
5.25. | Li-sulphur commercialisation |
5.26. | Lithium-sulphur companies |
5.27. | Li-S cost structure |
5.28. | Li-S material intensity |
5.29. | Li-S cost calculation |
5.30. | Li-S cost comparisons |
5.31. | Value proposition of Li-S batteries |
5.32. | Value chain and targeted markets |
5.33. | What markets exist for lithium sulphur batteries? |
5.34. | What markets exist for lithium sulphur batteries? |
5.35. | Academic activity |
5.36. | Li-S patent activity |
5.37. | Li-S patent activity - top assignees |
5.38. | Concluding remarks on Li-S |
5.39. | Alternatives to lithium based batteries |
5.40. | Alternative battery chemistries |
5.41. | Company timelines - Li-ion alternatives |
6. | SODIUM-ION (NA-ION) |
6.1. | Introduction to sodium-ion batteries |
6.2. | Na-ion cathode materials |
6.3. | Na-ion anode materials |
6.4. | Reasons to develop Na-ion |
6.5. | Na-ion vs Li-ion |
6.6. | Recent developments in Na-ion |
6.7. | Natron Energy - introduction |
6.8. | Na-ion using Prussian blue analogues |
6.9. | Natron Energy |
6.10. | Faradion - background |
6.11. | Faradion - technology |
6.12. | Faradion |
6.13. | HiNa Battery |
6.14. | Tiamat Energy |
6.15. | Altris AB |
6.16. | CATL enter Na-ion market |
6.17. | CATL Na-ion IP portfolio |
6.18. | CATL Na-ion patent examples |
6.19. | Broadbit Batteries |
6.20. | Aqueous Na-ion |
6.21. | Geyser Batteries |
6.22. | Na-ion patent activity |
6.23. | Na-ion companies compared |
6.24. | Na-ion performance compared |
6.25. | Appraisal of Na-ion |
6.26. | Value proposition of Na-ion batteries |
6.27. | Outlook for Na-ion |
6.28. | What markets exist for Na-ion batteries? |
6.29. | Target markets for Na-ion |
7. | ALUMINIUM-ION (AL-ION) |
7.1. | Why the interest in aluminium-ion? |
7.2. | Al-ion batteries - initial academic interest |
7.3. | Al-ion batteries - academic interest over time |
7.4. | Al-ion interest by university and region |
7.5. | Recent developments in Al-ion commercialisation |
7.6. | Al-ion batteries - state of technology |
7.7. | Battery chemistries compared |
7.8. | Options for fast-charging batteries |
7.9. | Conclusions |
8. | REDOX FLOW BATTERIES |
8.1. | Redox Flow Battery: Working Principle |
8.2. | Introduction to RFBs |
8.3. | Redox Flow Battery Classification |
8.4. | RFB chemistries: All Vanadium (VRFB) |
8.5. | RFB chemistries: Zinc Bromine flow battery (ZBB) - Hybrid |
8.6. | RFB Chemistries: All-Iron - Hybrid |
8.7. | Technology Recap |
8.8. | List of RFB Producers: Categorized by chemistry |
8.9. | RFB market |
8.10. | RFB market deployment |
8.11. | RFB Companies Market Share |
8.12. | Vanadium, Zinc, Iron - the great RFB contenders |
8.13. | RFB concluding remarks |
9. | ZN-BASED BATTERIES (ZINC-AIR, ZINC-ION, ZINC-BROMIDE) |
9.1. | Zn-based batteries |
9.2. | Zn-based batteries - introduction |
9.3. | Zinc-based batteries |
9.4. | Rechargeable zinc battery companies |
9.5. | Zinc-air batteries |
9.6. | Problems and solutions for rechargeable Zn-air batteries |
9.7. | Zinc 8 Energy |
9.8. | Zinc 8 Energy IP |
9.9. | E-Zinc |
9.10. | Zinc bromide batteries |
9.11. | Eos Energy Enterprise |
9.12. | Eos Energy - static Zn-Br battery |
9.13. | Eos Energy technology |
9.14. | Rechargeable Zn-MnO2 |
9.15. | Zn-ion battery - Salient Energy |
9.16. | Salient Energy IP |
9.17. | Enerpoly |
9.18. | Remarks on Zn-based batteries |
10. | HIGH TEMPERATURE BATTERIES |
10.1. | High-temperature batteries |
10.2. | NaS - NGK Insulators |
10.3. | Molten calcium battery - Ambri Inc |
11. | SUPERCAPACITORS |
11.1. | Supercapacitor fundamentals |
11.2. | Equations and charge-discharge behaviour |
11.3. | Inside a supercapacitor |
11.4. | What is a supercapacitor made of? |
11.5. | Supercapacitor performance comparison |
11.6. | Material development options |
11.7. | Carbon nanotubes |
11.8. | Graphene |
11.9. | Nanocarbon supercapacitor Ragone plots |
11.10. | Electrolytes |
11.11. | 100 Wh/kg supercapacitors? |
11.12. | Solid electrolytes - Super Dielectrics ltd |
11.13. | Pseudocapacitors |
11.14. | Pseudocapacitive materials |
11.15. | Performance of pseudocapacitors |
11.16. | Promise and reality of pseudocapacitors |
11.17. | Hybrid supercapacitors |
11.18. | Li-ion and hybrid capacitors |
11.19. | Tokyo University of Agriculture and Technology |
11.20. | Structural supercapacitors |
12. | FAST CHARGING BATTERIES |
12.1. | Fast charging at different scales |
12.2. | Why can't you just fast charge? |
12.3. | Rate limiting factors at the material level |
12.4. | Fast charge design hierarchy - levers to pull |
12.5. | Porsche Taycan fast charge |
12.6. | Tesla's use of NCA |
12.7. | LFP to gain traction? |
12.8. | Fast-charging battery developments |
12.9. | Fast charging batteries - outlook discussion |
13. | ADDRESSABLE MARKETS AND FORECASTS |
13.1. | Addressable markets |
13.2. | Addressable Li-ion markets (GWh) |
13.3. | Addressable market - hybrid EVs |
13.4. | Cathode demand for BEVs (GWh) |
13.5. | Cathode demand (GWh) |
13.6. | Silicon anode forecast methodology |
13.7. | Anode demand from BEVs, GWh |
13.8. | Anode demand from BEVs, GWh |
13.9. | Silicon anode material demand from BEVs, ktpa |
13.10. | Silicon anode material demand from BEVs, ktpa |
13.11. | Anode active material market from BEVs, $B |
13.12. | Anode active material market from BEVs, $B |
13.13. | Li-ion and anode material demand from EVs (exc. BEVs) by anode type |
13.14. | Li-ion demand from EVs (exc. BEVs) by anode type, GWh and kt |
13.15. | Li-ion demand from consumer devices by anode, GWh |
13.16. | Total advanced anode market |
13.17. | Stationary energy storage |
13.18. | RFB, Na-ion and Zn-based forecast |
13.19. | RFB, Na-ion and Zn-based battery forecast |