This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | IDTechEx Air Taxis: Electric Vertical Take-Off and Landing Aircraft Report |
1.2. | Flying Cars: The Dream Becoming A Reality |
1.3. | What Is An eVTOL Aircraft? |
1.4. | eVTOL Architectures |
1.5. | Why eVTOL Aircraft? |
1.6. | eVTOL Getting Off The Ground |
1.7. | Conclusions on Air Taxi Time Saving |
1.8. | Huge Companies Are Already Investing In eVTOL |
1.9. | Exciting Start-Ups Are Attracting Large Funding |
1.10. | When will the First eVTOL Air Taxis Launch? |
1.11. | Air Taxi Services |
1.12. | eVTOL As An Urban Mass Mobility Solution? |
1.13. | Where Is The eVTOL Air Taxi Advantage? |
1.14. | The Value of Autonomous Flight |
1.15. | eVTOL: Summary of Enabling Technologies |
1.16. | The Need for Component Improvements |
1.17. | eVTOL Battery Requirements |
1.18. | Lithium-based Batteries Beyond Li-ion |
1.19. | Li-ion Chemistry Snapshot: 2020, 2025, 2030 |
1.20. | eVTOL Motor / Powertrain Requirements |
1.21. | eVTOL Composite Material Requirements |
1.22. | eVTOL Infrastructure Requirements |
1.23. | Forecast Summary |
1.24. | eVTOL Air Taxi Sales Forecast (Units) |
1.25. | eVTOL Air Taxi Battery Demand Forecast (MWh) |
1.26. | eVTOL Battery Market Revenue Forecast ($USD million) |
1.27. | eVTOL Air Taxi Market Revenue Forecast ($USD billion) |
2. | INTRODUCTION |
2.1. | What is an eVTOL Aircraft? |
2.2. | Distributed Electric Propulsion |
2.3. | The Dream of Urban Air Mobility |
2.4. | Advantages of UAM Networks |
2.5. | Advanced Air Mobility |
2.6. | eVTOL Applications |
2.7. | Air Taxi Services |
2.8. | Current General Aviation Aircraft |
2.9. | Why Helicopters are not Suitable for UAM |
2.10. | Range and Endurance Limitations of eVTOL |
2.11. | GAMA General Aviation Helicopter Sales and Market |
2.12. | Worldwide Helicopter Fleet |
2.13. | Helicopter OEMs |
2.14. | GAMA General Aviation Airplane Sales and Market Size |
2.15. | Top 5 General Aviation OEMs By Airplane Type |
2.16. | What is making eVTOL possible? |
2.17. | Why eVTOL Aircraft? |
2.18. | eVTOL Air Taxis: Much More Than New Aircraft |
2.19. | Huge Companies are Investing in eVTOL Development |
2.20. | eVTOL Start-Up Investment |
2.21. | Market Outlook |
2.22. | Significant Challenges |
2.23. | Numerous Opportunities |
2.24. | NASA: UAM Challenges and Constraints |
2.25. | Key Issues for eVTOL Air Taxis |
3. | AEROSPACE SUPPLIERS EVTOL AIRCRAFT ACTIVITY |
3.1. | Top 5 Aerospace Suppliers by Revenue |
3.2. | Raytheon Technologies Corp. |
3.3. | General Electric |
3.4. | SAFRAN |
3.5. | Rolls-Royce |
3.6. | Honeywell |
4. | JOURNEY USE-CASES & OPTIMIZATION: WHERE EVTOL HAS AN ADVANTAGE |
4.1. | Will eVTOL Taxis Reduce Journey Time? |
4.2. | eVTOL Multicopter vs Robotaxi: 10km Journey |
4.3. | eVTOL vs Robotaxi: Example 10km Journey |
4.4. | eVTOL Multicopter vs Robotaxi: 40km Journey |
4.5. | eVTOL vs Robotaxi: Example 40km Journey |
4.6. | Multicopter eVTOL vs Robotaxi: 100km Journey |
4.7. | Vectored Thrust eVTOL vs Robotaxi: 100km Journey |
4.8. | eVTOL vs Robotaxi: Example 100km Journey |
4.9. | Important Factors for an Air Taxi Time Advantage |
4.10. | Conclusions on Air Taxi Time Saving |
5. | IDTECHEX COST ANALYSIS |
5.1. | TCO Analysis: eVTOL Taxi $/50km Trip (Base Case) |
5.2. | eVTOL vs Helicopter Operating Cost |
5.3. | eVTOL Aircraft Upfront Cost |
5.4. | eVTOL Operational Fuel Cost Savings |
5.5. | The Value of Autonomous Flight |
5.6. | TCO vs Helicopters Uber Air $/mile |
5.7. | Sensitivity to Battery Cost and Performance |
5.8. | Sensitivity to Upfront / Infrastructure Cost |
5.9. | Sensitivity to Average Trip Length |
5.10. | TCO Analysis: $/15km Trip: Multicopter eVTOL Design |
5.11. | TCO $/15km Autonomous Trip: Multicopter vs Base case |
6. | EVTOL ARCHITECTURES |
6.1. | World eVTOL Aircraft Directory |
6.2. | Geographical Distribution of eVTOL Projects |
6.3. | Key Players: eVTOL Air Taxi |
6.4. | Main eVTOL Architectures |
6.5. | eVTOL Architecture Choice |
6.6. | eVTOL Multicopter / Rotorcraft |
6.7. | Multicopter: Flight Modes |
6.8. | Multicopter / Rotorcraft: Key Players Specifications |
6.9. | Benefits / Drawbacks of Multicopters |
6.10. | eVTOL Lift + Cruise |
6.11. | Lift + Cruise: Flight Modes |
6.12. | Lift + Cruise: Key Players Specifications |
6.13. | Benefits / Drawbacks of Lift + Cruise |
6.14. | Vectored Thrust eVTOL |
6.15. | Vectored Thrust: Flight Modes |
6.16. | eVTOL Vectored Thrust: Tiltwing |
6.17. | Tiltwing: Key Player Specifications |
6.18. | Benefits / Drawbacks of Tiltwing |
6.19. | eVTOL Vectored Thrust: Tiltrotor |
6.20. | Tiltrotor: Key Player Specifications |
6.21. | Benefits / Drawbacks of Tiltrotor |
6.22. | When will the First eVTOL Air Taxis Launch? |
6.23. | Manned Air Taxi eVTOL Test Flights |
6.24. | Unmanned Air Taxi eVTOL Model Test Flights |
6.25. | Range and Cruise Speed: Electric eVTOL Designs |
6.26. | Hover Lift Efficiency and Disc Loading |
6.27. | Hover and Cruise Efficiency by eVTOL Architecture |
6.28. | Complexity, Criticality & Cruise Performance |
6.29. | Comparison of eVTOL Architectures |
7. | PROGRAMS SUPPORTING EVTOL DEVELOPMENT |
7.1. | Uber Elevate - Joby Aviation |
7.2. | Driving Air Taxi Progress: Uber Elevate |
7.3. | Uber Elevate: Strategic OEM Vehicle Partnerships |
7.4. | Uber Air Vehicle Requirements |
7.5. | Uber Air Mission Profile |
7.6. | U.S. Airforce eVTOL Support - Agility Prime |
7.7. | US Airforce - Agility Prime |
7.8. | Agility Prime: Advance Air Mobility Ecosystem |
7.9. | Agility Prime: Advance Air Mobility Ecosystem |
7.10. | NASA: Advanced Air Mobility National Campaign |
7.11. | Groupe ADP eVTOL Test Area |
7.12. | China's Unmanned Civil Aviation Zones |
7.13. | UK's Future Flight Challenge |
7.14. | Varon Vehicles: UAM in Latin America |
8. | OEM MARKET PLAYERS |
8.1. | Airbus |
8.2. | Airbus A3 (Acubed): Vahana |
8.3. | Vahana Controls and Redundancy |
8.4. | Airbus Helicopters: CityAirbus |
8.5. | Airbus eVTOL Projects |
8.6. | Archer Aviation |
8.7. | Bell Textron |
8.8. | Bell Textron: Nexus |
8.9. | Bell Textron: Experimental eVTOL Concepts |
8.10. | Bell Textron |
8.11. | Bell Textron - Key eVTOL Partnerships |
8.12. | BETA Technologies |
8.13. | EHang 216 |
8.14. | EHang |
8.15. | Embraer: Eve (EmbraerX) |
8.16. | Hyundai: S-A1 |
8.17. | Jaunt Air Mobility: Journey Air Taxi |
8.18. | Jaunt Air Mobility |
8.19. | Jaunt Air Mobility - Key Partners |
8.20. | Joby Aviation |
8.21. | Lilium |
8.22. | Moog: SureFly |
8.23. | SkyDrive: SD-XX |
8.24. | Volocopter: VoloCity |
8.25. | Volocopter |
8.26. | Wisk Aero |
8.27. | IDTechEx Portal Company Profiles - OEM |
9. | BATTERIES FOR EVTOL |
9.1. | What is a Li-ion Battery? |
9.2. | Electrochemistry Definitions |
9.3. | The Battery Trilemma |
9.4. | Battery Wish List for an eVTOL |
9.5. | More Than One Type of Li-ion Battery |
9.6. | eVTOL Battery Requirements |
9.7. | Airbus Minimum Battery Requirement |
9.8. | eVTOL Battery Range Calculation |
9.9. | Aerospace Battery Pack Sizing |
9.10. | Importance of Battery Pack Energy Density |
9.11. | Importance of eVTOL Lift/Drag to Range |
9.12. | Uber Air Proposed Battery Requirements |
9.13. | Battery Size |
9.14. | Batteries Packs: More than Just Cells |
9.15. | Eliminating the Battery Module |
9.16. | eVTOL Batteries: Specific Energy Vs Discharge Rates |
9.17. | Battery500 |
9.18. | E-One Moli Energy Corp. |
9.19. | Electric Power Systems (EPS): Li-ion Batteries |
9.20. | Electric Power Systems (EPS) |
9.21. | Amprius Inc: Silicon Anode |
9.22. | Leclanche Energy Density Targets |
9.23. | Moving on from Li-ion? |
9.24. | Lithium-based Batteries Beyond Li-ion |
9.25. | Li-ion Chemistry Snapshot: 2020, 2025, 2030 |
9.26. | Lithium-Sulfur Batteries (Li-S) |
9.27. | Advantages of LSBs |
9.28. | Li-sulfur energy density |
9.29. | OXIS Energy: Lithium-Sulfur Batteries |
9.30. | Lithium-Metal and Solid-State Batteries (SSB) |
9.31. | Solid Energy Systems - Solid State Batteries |
9.32. | Sion Power Corporation: Lithium-Metal Battery |
9.33. | Sion Power Corporation: Lithium-Metal Battery |
9.34. | Cuberg: Lithium-Metal Batteries |
9.35. | Battery Chemistry Comparison for eVTOL |
9.36. | Battery Fast Charging |
9.37. | Battery Swapping |
9.38. | Distributed Battery Modules |
9.39. | eVTOL Battery Cost |
9.40. | Development Focus for eVTOL Batteries |
10. | FUEL CELL EVTOL |
10.1. | Fuel Cell eVTOL |
10.2. | Proton Exchange Membrane Fuel Cells |
10.3. | Grey Hydrogen |
10.4. | Conclusions for Hydrogen Fuel Cell eVTOL |
11. | HYBRID EVTOL |
11.1. | Electric Propulsion System |
11.2. | Conventional Propulsion Systems |
11.3. | Hybrid Propulsion Systems |
11.4. | Hybrid Systems Optimisation |
11.5. | All-Electric Range vs Fuel Cell and Hybrid Powertrains |
11.6. | Hybrid Propulsion: Turbines and Piston Engines |
11.7. | Conclusions for Hybrid eVTOL |
12. | ELECTRIC MOTORS |
12.1. | eVTOL Motor / Powertrain Requirements |
12.2. | eVTOL Aircraft Motor Power Sizing |
12.3. | eVTOL Power Requirement: kW Estimate |
12.4. | eVTOL Power Requirement |
12.5. | eVTOL Power Requirement: kW Estimate |
12.6. | Electric Motors and Distributed Electric Propulsion |
12.7. | eVTOL Number of Electric Motors |
12.8. | Motor Sizing |
12.9. | Electric Motors Designs |
12.10. | Comparison of Motor Construction and Merits |
12.11. | Brushless DC Motors (BLDC) |
12.12. | BLDC Motors: Advantages, Disadvantages |
12.13. | BLDC: Benchmarking |
12.14. | Permanent Magnet Synchronous Motors (PMSM) |
12.15. | PMSM: Advantages, Disadvantages |
12.16. | PMSM: Benchmarking |
12.17. | Axial Flux Motors |
12.18. | Why Axial Flux Motors in eVTOL? |
12.19. | Yoked or Yokeless Axial Flux |
12.20. | Axial Flux Motors - Interesting Players |
12.21. | List of Axial Flux Motor Players |
12.22. | YASA |
12.23. | Rolls-Royce / Siemens |
12.24. | EMRAX |
12.25. | ePropelled |
12.26. | H3X |
12.27. | MAGicALL |
12.28. | Magnix |
12.29. | MGM COMPRO |
12.30. | SAFRAN |
12.31. | Case-studies |
13. | COMPOSITE MATERIALS & LIGHTWEIGHTING |
13.1. | Composite Materials - Lightweighting |
13.2. | What is Lightweighting? |
13.3. | Lightweight Material Drivers |
13.4. | Comparison of Lightweight Materials |
13.5. | Lightweight Material Candidates |
13.6. | Introduction to Composites |
13.7. | Introduction to Composite Materials |
13.8. | Comparison of Relative Fiber Properties |
13.9. | Cost Adjusted Fiber Properties |
13.10. | Supply Chain for Composite Manufacturers |
13.11. | Carbon Fibre Reinforced Polymer (CFRP) |
13.12. | Glass Fibres |
13.13. | FRP/PMC Introduction |
13.14. | Resins - Overview and Property Comparison |
13.15. | Thermoplastics for Composites - Overview |
13.16. | Thermosetting Resins - Key Resins |
13.17. | Key Challenges for Composites |
13.18. | CFRP Automation Case Study |
13.19. | eVTOL Composite Material Requirements |
13.20. | Composite Materials - Toray / Joby Aviation |
13.21. | Composite Materials - Toray / Lilium |
13.22. | Composite Materials - BFT / Beta |
13.23. | Composite Materials - Triumph / Jaunt |
13.24. | Composite Materials - Aria Group / Hyundai |
13.25. | Composite Materials - GKN Aerospace / Bell |
13.26. | Composite Materials - Hexcel |
14. | REGULATION |
14.1. | eVTOL Certification |
14.2. | eVTOL Regulation |
14.3. | European Union Aviation Safety Agency (EASA) |
14.4. | EASA Special Condition: SC-VTOL |
14.5. | EASA Certification Categories |
14.6. | EASA EUROCAE Working Groups |
14.7. | European Union Aviation Safety Agency (EASA) |
14.8. | U.S. Federal Aviation Administration (FAA) |
14.9. | Civil Aviation Authority of China (CAAC) |
15. | VERTIPORT INFRASTRUCTURE FOR EVTOL |
15.1. | eVTOL Infrastructure Requirements |
15.2. | Skyport / Vertiports |
15.3. | Vertiport Nodal Network |
15.4. | CORGAN |
15.5. | CORGAN: Meeting Operational Demand |
15.6. | CORGAN: Stacked Skyports |
15.7. | CORGAN's Mega Skyport |
15.8. | CORGAN Uber Skyport Mobility Hub |
15.9. | MVRDV |
15.10. | Hyundai Future Mobility Vision |
15.11. | Groupe ADP |
15.12. | Lilium Scalable Vertiports |
15.13. | Skyports |
15.14. | VoloPort |
15.15. | Beta Technologies Recharge Pad |
15.16. | EHang E-Port |
15.17. | Uber Air Mega Skyport Concepts 2018 |
15.18. | Uber Air Skyport Mobility Hub Concepts 2019 |
15.19. | eVTOL Urban Air Traffic Management (UATM) |
15.20. | UAM Traffic Management |
16. | FORECASTS |
16.1. | Forecast Summary |
16.2. | Global eVTOL Sales Forecast 2021-2041: Methodology |
16.3. | Global eVTOL Sales Forecast 2021-2041: Methodology |
16.4. | eVTOL Air Taxi Sales Forecast (Units) |
16.5. | eVTOL Air Taxi Sales Forecast by World Bank Country Wealth Definition and Economy Size (Units) |
16.6. | eVTOL Air Taxi Battery Demand Forecast (MWh) |
16.7. | eVTOL Battery Market Revenue Forecast ($USD million) |
16.8. | eVTOL forecast: Average eVTOL Battery Size 2018-2041 |
16.9. | eVTOL Air Taxi Market Revenue Forecast ($USD billion) |
16.10. | eVTOL forecast: Average eVTOL Price 2018-2041 |
スライド | 345 |
---|---|
フォーキャスト | 2041 |
ISBN | 9781913899387 |